-
Notifications
You must be signed in to change notification settings - Fork 1.6k
Population zh CN
Caffeine提供了四种缓存添加策略:手动加载,自动加载,手动异步加载和自动异步加载。
Cache<Key, Graph> cache = Caffeine.newBuilder()
.expireAfterWrite(10, TimeUnit.MINUTES)
.maximumSize(10_000)
.build();
// 查找一个缓存元素, 没有查找到的时候返回null
Graph graph = cache.getIfPresent(key);
// 查找缓存,如果缓存不存在则生成缓存元素, 如果无法生成则返回null
graph = cache.get(key, k -> createExpensiveGraph(key));
// 添加或者更新一个缓存元素
cache.put(key, graph);
// 移除一个缓存元素
cache.invalidate(key);
Cache
接口提供了显式搜索查找、更新和移除缓存元素的能力。
推荐使用 cache.get(key, k -> value)
操作来在缓存中不存在该key对应的缓存元素的时候进行计算生成并直接写入至缓存内,而当该key对应的缓存元素存在的时候将会直接返回存在的缓存值。一次 cache.put(key, value)
操作将会直接写入或者更新缓存里的缓存元素,在缓存中已经存在的该key对应缓存值都会直接被覆盖。值得注意的是,当缓存的元素无法生成或者在生成的过程中抛出异常而导致生成元素失败,cache.get
也许会返回 null
。
当然,也可以使用Cache.asMap()
所暴露出来的ConcurrentMap的方法对缓存进行操作。
LoadingCache<Key, Graph> cache = Caffeine.newBuilder()
.maximumSize(10_000)
.expireAfterWrite(10, TimeUnit.MINUTES)
.build(key -> createExpensiveGraph(key));
// 查找缓存,如果缓存不存在则生成缓存元素, 如果无法生成则返回null
Graph graph = cache.get(key);
// 批量查找缓存,如果缓存不存在则生成缓存元素
Map<Key, Graph> graphs = cache.getAll(keys);
一个LoadingCache
是一个Cache
附加上 CacheLoader
能力之后的缓存实现。
通过 getAll
可以达到批量查找缓存的目的。 默认情况下,在getAll
方法中,将会对每个不存在对应缓存的key调用一次 CacheLoader.load
来生成缓存元素。 在批量检索比单个查找更有效率的场景下,你可以覆盖并开发CacheLoader.loadAll
方法来使你的缓存更有效率。
值得注意的是,你可以通过实现一个 CacheLoader.loadAll
并在其中为没有在参数中请求的key也生成对应的缓存元素。打个比方,如果对应某个key生成的缓存元素与包含这个key的一组集合剩余的key所对应的元素一致,那么在loadAll
中也可以同时加载剩下的key对应的元素到缓存当中。
AsyncCache<Key, Graph> cache = Caffeine.newBuilder()
.expireAfterWrite(10, TimeUnit.MINUTES)
.maximumSize(10_000)
.buildAsync();
// 查找一个缓存元素, 没有查找到的时候返回null
CompletableFuture<Graph> graph = cache.getIfPresent(key);
// 查找缓存元素,如果不存在,则异步生成
graph = cache.get(key, k -> createExpensiveGraph(key));
// 添加或者更新一个缓存元素
cache.put(key, graph);
// 移除一个缓存元素
cache.synchronous().invalidate(key);
一个AsyncCache
是 Cache
的一个变体,AsyncCache
提供了在 Executor上生成缓存元素并返回 CompletableFuture的能力。这给出了在当前流行的响应式编程模型中利用缓存的能力。
synchronous()
方法给 Cache
提供了阻塞直到异步缓存生成完毕的能力。
当然,也可以使用 AsyncCache.asMap()
所暴露出来的ConcurrentMap的方法对缓存进行操作。
默认的线程池实现是 ForkJoinPool.commonPool() ,当然你也可以通过覆盖并实现 Caffeine.executor(Executor)
方法来自定义你的线程池选择。
AsyncLoadingCache<Key, Graph> cache = Caffeine.newBuilder()
.maximumSize(10_000)
.expireAfterWrite(10, TimeUnit.MINUTES)
// 你可以选择: 去异步的封装一段同步操作来生成缓存元素
.buildAsync(key -> createExpensiveGraph(key));
// 你也可以选择: 构建一个异步缓存元素操作并返回一个future
.buildAsync((key, executor) -> createExpensiveGraphAsync(key, executor));
// 查找缓存元素,如果其不存在,将会异步进行生成
CompletableFuture<Graph> graph = cache.get(key);
// 批量查找缓存元素,如果其不存在,将会异步进行生成
CompletableFuture<Map<Key, Graph>> graphs = cache.getAll(keys);
一个 AsyncLoadingCache
是一个 AsyncCache
加上 AsyncCacheLoader
能力的实现。
在需要同步的方式去生成缓存元素的时候,CacheLoader
是合适的选择。而在异步生成缓存的场景下, AsyncCacheLoader
则是更合适的选择并且它会返回一个 CompletableFuture。
通过 getAll
可以达到批量查找缓存的目的。 默认情况下,在getAll
方法中,将会对每个不存在对应缓存的key调用一次 AsyncCacheLoader.asyncLoad
来生成缓存元素。 在批量检索比单个查找更有效率的场景下,你可以覆盖并开发AsyncCacheLoader.asyncLoadAll
方法来使你的缓存更有效率。
值得注意的是,你可以通过实现一个 AsyncCacheLoader.asyncLoadAll
并在其中为没有在参数中请求的key也生成对应的缓存元素。打个比方,如果对应某个key生成的缓存元素与包含这个key的一组集合剩余的key所对应的元素一致,那么在asyncLoadAll
中也可以同时加载剩下的key对应的元素到缓存当中。