Skip to content

Commit

Permalink
Remove old callback deprecated in 1.3. (#7280)
Browse files Browse the repository at this point in the history
  • Loading branch information
trivialfis authored Oct 8, 2021
1 parent 578de9f commit 69d3b1b
Show file tree
Hide file tree
Showing 7 changed files with 70 additions and 475 deletions.
351 changes: 1 addition & 350 deletions python-package/xgboost/callback.py
Original file line number Diff line number Diff line change
Expand Up @@ -10,262 +10,10 @@
import numpy

from . import rabit
from .core import EarlyStopException, CallbackEnv, Booster, XGBoostError
from .core import Booster, XGBoostError
from .compat import STRING_TYPES


def _get_callback_context(env):
"""return whether the current callback context is cv or train"""
if env.model is not None and env.cvfolds is None:
context = 'train'
elif env.model is None and env.cvfolds is not None:
context = 'cv'
else:
raise ValueError("Unexpected input with both model and cvfolds.")
return context


def _fmt_metric(value, show_stdv=True):
"""format metric string"""
if len(value) == 2:
return f"{value[0]}:{value[1]:.5f}"
if len(value) == 3:
if show_stdv:
return f"{value[0]}:{value[1]:.5f}+{value[2]:.5f}"
return f"{value[0]}:{value[1]:.5f}"
raise ValueError("wrong metric value", value)


def print_evaluation(period=1, show_stdv=True):
"""Create a callback that print evaluation result.
We print the evaluation results every **period** iterations
and on the first and the last iterations.
Parameters
----------
period : int
The period to log the evaluation results
show_stdv : bool, optional
Whether show stdv if provided
Returns
-------
callback : function
A callback that print evaluation every period iterations.
"""
def callback(env):
"""internal function"""
if env.rank != 0 or (not env.evaluation_result_list) or period is False or period == 0:
return
i = env.iteration
if i % period == 0 or i + 1 == env.begin_iteration or i + 1 == env.end_iteration:
msg = '\t'.join([_fmt_metric(x, show_stdv) for x in env.evaluation_result_list])
rabit.tracker_print(f"{i}\t{msg}\n")
return callback


def record_evaluation(eval_result):
"""Create a call back that records the evaluation history into **eval_result**.
Parameters
----------
eval_result : dict
A dictionary to store the evaluation results.
Returns
-------
callback : function
The requested callback function.
"""
if not isinstance(eval_result, dict):
raise TypeError('eval_result has to be a dictionary')
eval_result.clear()

def init(env):
"""internal function"""
for k, _ in env.evaluation_result_list:
pos = k.index('-')
key = k[:pos]
metric = k[pos + 1:]
if key not in eval_result:
eval_result[key] = {}
if metric not in eval_result[key]:
eval_result[key][metric] = []

def callback(env):
"""internal function"""
if not eval_result:
init(env)
for k, v in env.evaluation_result_list:
pos = k.index('-')
key = k[:pos]
metric = k[pos + 1:]
eval_result[key][metric].append(v)
return callback


def reset_learning_rate(learning_rates):
"""Reset learning rate after iteration 1
NOTE: the initial learning rate will still take in-effect on first iteration.
Parameters
----------
learning_rates: list or function
List of learning rate for each boosting round
or a customized function that calculates eta in terms of
current number of round and the total number of boosting round (e.g.
yields learning rate decay)
* list ``l``: ``eta = l[boosting_round]``
* function ``f``: ``eta = f(boosting_round, num_boost_round)``
Returns
-------
callback : function
The requested callback function.
"""
def get_learning_rate(i, n, learning_rates):
"""helper providing the learning rate"""
if isinstance(learning_rates, list):
if len(learning_rates) != n:
raise ValueError("Length of list 'learning_rates' has to equal 'num_boost_round'.")
new_learning_rate = learning_rates[i]
else:
new_learning_rate = learning_rates(i, n)
return new_learning_rate

def callback(env):
"""internal function"""
context = _get_callback_context(env)

if context == 'train':
bst, i, n = env.model, env.iteration, env.end_iteration
bst.set_param(
'learning_rate', get_learning_rate(i, n, learning_rates))
elif context == 'cv':
i, n = env.iteration, env.end_iteration
for cvpack in env.cvfolds:
bst = cvpack.bst
bst.set_param(
'learning_rate', get_learning_rate(i, n, learning_rates))

callback.before_iteration = False
return callback


def early_stop(stopping_rounds, maximize=False, verbose=True):
"""Create a callback that activates early stoppping.
Validation error needs to decrease at least
every **stopping_rounds** round(s) to continue training.
Requires at least one item in **evals**.
If there's more than one, will use the last.
Returns the model from the last iteration (not the best one).
If early stopping occurs, the model will have three additional fields:
``bst.best_score``, ``bst.best_iteration``.
Parameters
----------
stopping_rounds : int
The stopping rounds before the trend occur.
maximize : bool
Whether to maximize evaluation metric.
verbose : optional, bool
Whether to print message about early stopping information.
Returns
-------
callback : function
The requested callback function.
"""
state = {}

def init(env):
"""internal function"""
bst = env.model

if not env.evaluation_result_list:
raise ValueError('For early stopping you need at least one set in evals.')
if len(env.evaluation_result_list) > 1 and verbose:
msg = ("Multiple eval metrics have been passed: "
"'{0}' will be used for early stopping.\n\n")
rabit.tracker_print(msg.format(env.evaluation_result_list[-1][0]))
maximize_metrics = ('auc', 'aucpr', 'map', 'ndcg')
maximize_at_n_metrics = ('auc@', 'aucpr@', 'map@', 'ndcg@')
maximize_score = maximize
metric_label = env.evaluation_result_list[-1][0]
metric = metric_label.split('-', 1)[-1]

if any(metric.startswith(x) for x in maximize_at_n_metrics):
maximize_score = True

if any(metric.split(":")[0] == x for x in maximize_metrics):
maximize_score = True

if verbose and env.rank == 0:
msg = "Will train until {} hasn't improved in {} rounds.\n"
rabit.tracker_print(msg.format(metric_label, stopping_rounds))

state['maximize_score'] = maximize_score
state['best_iteration'] = 0
if maximize_score:
state['best_score'] = float('-inf')
else:
state['best_score'] = float('inf')
# pylint: disable=consider-using-f-string
msg = '[%d]\t%s' % (
env.iteration,
'\t'.join([_fmt_metric(x) for x in env.evaluation_result_list])
)
state['best_msg'] = msg

if bst is not None:
if bst.attr('best_score') is not None:
state['best_score'] = float(bst.attr('best_score'))
state['best_iteration'] = int(bst.attr('best_iteration'))
state['best_msg'] = bst.attr('best_msg')
else:
bst.set_attr(best_iteration=str(state['best_iteration']))
bst.set_attr(best_score=str(state['best_score']))
else:
assert env.cvfolds is not None

def callback(env):
"""internal function"""
if not state:
init(env)
score = env.evaluation_result_list[-1][1]
best_score = state['best_score']
best_iteration = state['best_iteration']
maximize_score = state['maximize_score']
if (maximize_score and score > best_score) or \
(not maximize_score and score < best_score):
# pylint: disable=consider-using-f-string
msg = '[%d]\t%s' % (
env.iteration,
'\t'.join([_fmt_metric(x) for x in env.evaluation_result_list]))
state['best_msg'] = msg
state['best_score'] = score
state['best_iteration'] = env.iteration
# save the property to attributes, so they will occur in checkpoint.
if env.model is not None:
env.model.set_attr(best_score=str(state['best_score']),
best_iteration=str(state['best_iteration']),
best_msg=state['best_msg'])
elif env.iteration - best_iteration >= stopping_rounds:
best_msg = state['best_msg']
if verbose and env.rank == 0:
msg = "Stopping. Best iteration:\n{}\n\n"
rabit.tracker_print(msg.format(best_msg))
raise EarlyStopException(best_iteration)
return callback


# The new implementation of callback functions.
# Breaking:
# - reset learning rate no longer accepts total boosting rounds
Expand Down Expand Up @@ -741,100 +489,3 @@ def after_iteration(self, model, epoch: int,
model.save_model(path)
self._epoch += 1
return False


class LegacyCallbacks:
'''Adapter for legacy callback functions.
.. versionadded:: 1.3.0
Parameters
----------
callbacks : Sequence
A sequence of legacy callbacks (callbacks that are not instance of
TrainingCallback)
start_iteration : int
Begining iteration.
end_iteration : int
End iteration, normally is the number of boosting rounds.
evals : Sequence
Sequence of evaluation dataset tuples.
feval : Custom evaluation metric.
'''
def __init__(self, callbacks, start_iteration, end_iteration,
feval, cvfolds=None):
self.callbacks_before_iter = [
cb for cb in callbacks
if cb.__dict__.get('before_iteration', False)]
self.callbacks_after_iter = [
cb for cb in callbacks
if not cb.__dict__.get('before_iteration', False)]

self.start_iteration = start_iteration
self.end_iteration = end_iteration
self.cvfolds = cvfolds

self.feval = feval
assert self.feval is None or callable(self.feval)

if cvfolds is not None:
self.aggregated_cv = None

super().__init__()

def before_training(self, model):
'''Nothing to do for legacy callbacks'''
return model

def after_training(self, model):
'''Nothing to do for legacy callbacks'''
return model

def before_iteration(self, model, epoch, dtrain, evals):
'''Called before each iteration.'''
for cb in self.callbacks_before_iter:
rank = rabit.get_rank()
cb(CallbackEnv(model=None if self.cvfolds is not None else model,
cvfolds=self.cvfolds,
iteration=epoch,
begin_iteration=self.start_iteration,
end_iteration=self.end_iteration,
rank=rank,
evaluation_result_list=None))
return False

def after_iteration(self, model, epoch, dtrain, evals):
'''Called after each iteration.'''
evaluation_result_list = []
if self.cvfolds is not None:
# dtrain is not used here.
scores = model.eval(epoch, self.feval)
self.aggregated_cv = _aggcv(scores)
evaluation_result_list = self.aggregated_cv

if evals:
# When cv is used, evals are embedded into folds.
assert self.cvfolds is None
bst_eval_set = model.eval_set(evals, epoch, self.feval)
if isinstance(bst_eval_set, STRING_TYPES):
msg = bst_eval_set
else:
msg = bst_eval_set.decode()
res = [x.split(':') for x in msg.split()]
evaluation_result_list = [(k, float(v)) for k, v in res[1:]]

try:
for cb in self.callbacks_after_iter:
rank = rabit.get_rank()
cb(CallbackEnv(model=None if self.cvfolds is not None else model,
cvfolds=self.cvfolds,
iteration=epoch,
begin_iteration=self.start_iteration,
end_iteration=self.end_iteration,
rank=rank,
evaluation_result_list=evaluation_result_list))
except EarlyStopException:
return True

return False
13 changes: 0 additions & 13 deletions python-package/xgboost/core.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,7 +2,6 @@
# pylint: disable=too-many-arguments, too-many-branches, invalid-name
# pylint: disable=too-many-lines, too-many-locals, no-self-use
"""Core XGBoost Library."""
import collections
# pylint: disable=no-name-in-module,import-error
from collections.abc import Mapping
from typing import List, Optional, Any, Union, Dict, TypeVar
Expand Down Expand Up @@ -46,18 +45,6 @@ def __init__(self, best_iteration):
self.best_iteration = best_iteration


# Callback environment used by callbacks
CallbackEnv = collections.namedtuple(
"XGBoostCallbackEnv",
["model",
"cvfolds",
"iteration",
"begin_iteration",
"end_iteration",
"rank",
"evaluation_result_list"])


def from_pystr_to_cstr(data: Union[str, List[str]]):
"""Convert a Python str or list of Python str to C pointer
Expand Down
Loading

0 comments on commit 69d3b1b

Please sign in to comment.