spatial_graph
provides a data structure for directed and undirected graphs,
where each node has an nD position (in time or space).
- support for arbitrary number of dimensions
- typed node identifiers and attributes
- any fixed-length type that is supported by
numpy
- any fixed-length type that is supported by
- efficient node/edge queries by
- ROI
- kNN (by points / lines)
- numpy-like interface for efficient:
- graph population and manipulation
- query results
- attribute access
- minimal memory footprint
- minimal dependencies
cython
/witty
/cheetah3
for runtime compilation- numpy for array interfaces
- PYX API for graph algorithms in C/C++
- graph algorithms
- I/O
- non-typed arguments
- non-spatial graphs
- out-of-memory support
- networkx compatibility
Graph creation:
graph = sg.SpatialGraph(
ndims=3,
node_dtype="uint64",
node_attr_dtypes={"position": "double[3]"},
edge_attr_dtypes={"score": "float32"},
position_attr="position",
directed=False,
)
Adding nodes/edges:
graph.add_nodes(
np.array([1, 2, 3, 4, 5], dtype="uint64"),
position=np.array(
[
[0.1, 0.1, 0.1],
[0.2, 0.2, 0.2],
[0.3, 0.3, 0.3],
[0.4, 0.4, 0.4],
[0.5, 0.5, 0.5],
],
dtype="double",
),
)
graph.add_edges(
np.array([[1, 2], [3, 4], [5, 1]], dtype="uint64"),
score=np.array([0.2, 0.3, 0.4], dtype="float32"),
)
Query nodes/edges in ROI:
# nodes/edges will be numpy arrays of dtype uint64 and shape (n,)/(n, 2)
nodes = graph.query_nodes_in_roi(np.array([[0.0, 0.0, 0.0], [0.25, 0.25, 0.25]]))
edges = graph.query_edges_in_roi(np.array([[0.0, 0.0, 0.0], [0.25, 0.25, 0.25]]))
Query nodes/edges by position:
nodes = graph.query_nearest_nodes(np.array([0.3, 0.3, 0.3]), k=3)
edges = graph.query_nearest_edges(np.array([0.3, 0.3, 0.3]), k=3)
Access node/edge attributes:
node_positions = graph.node_attrs[nodes].position
edge_scores = graph.edge_attrs[edges].score
Delete nodes/edges:
graph.remove_nodes(nodes[:1000])
A SpatialGraph
consists of three data structures: