Skip to content

Commit

Permalink
Merge branch 'main' into support_var_storage
Browse files Browse the repository at this point in the history
  • Loading branch information
doichanj authored Jun 10, 2024
2 parents 49473fa + 6f20107 commit 47f96c3
Show file tree
Hide file tree
Showing 19 changed files with 1,349 additions and 50 deletions.
2 changes: 2 additions & 0 deletions qiskit_aer/noise/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -181,6 +181,7 @@
NoiseModel
QuantumError
PauliLindbladError
ReadoutError
Expand Down Expand Up @@ -240,6 +241,7 @@
from .noise_model import NoiseModel
from .errors import QuantumError
from .errors import PauliError
from .errors import PauliLindbladError
from .errors import ReadoutError

# Error generating functions
Expand Down
1 change: 1 addition & 0 deletions qiskit_aer/noise/errors/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -17,6 +17,7 @@
from .readout_error import ReadoutError
from .quantum_error import QuantumError
from .pauli_error import PauliError
from .pauli_lindblad_error import PauliLindbladError
from .standard_errors import kraus_error
from .standard_errors import mixed_unitary_error
from .standard_errors import coherent_unitary_error
Expand Down
363 changes: 363 additions & 0 deletions qiskit_aer/noise/errors/pauli_lindblad_error.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,363 @@
# This code is part of Qiskit.
#
# (C) Copyright IBM 2018-2024.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.

"""
Class for representing a Pauli noise channel generated by a Pauli Lindblad dissipator.
"""

from __future__ import annotations
from collections.abc import Sequence
import numpy as np

from qiskit.quantum_info import Pauli, PauliList, SparsePauliOp, ScalarOp, SuperOp
from qiskit.quantum_info.operators.mixins import TolerancesMixin
from .base_quantum_error import BaseQuantumError
from .quantum_error import QuantumError
from .pauli_error import PauliError, sort_paulis
from ..noiseerror import NoiseError


class PauliLindbladError(BaseQuantumError, TolerancesMixin):
r"""A Pauli channel generated by a Pauli Lindblad dissipator.
This operator represents an N-qubit quantum error channel
:math:`E(ρ) = e^{\sum_j r_j D_{P_j}}(ρ)` generated by Pauli Lindblad dissipators
:math:`D_P(ρ) = P ρ P - ρ`, where :math:`P_j` are N-qubit :class:`~.Pauli` operators.
The list of Pauli generator terms are stored as a :class:`~.PauliList` and can be
accessed via the :attr:`generators` attribute. The array of dissipator rates
:math:`r_j` can be accessed via the :attr:`rates` attribute.
A Pauli lindblad error is equivalent to a :class:`.PauliError` and can be converted
using the :meth:`to_pauli_error` method. Though note that for a sparse generated
``PauliLindbladError`` there may in general be exponentially many terms in the
converted :class:`.PauliError` operator. Because of this, this operator can be
used to more efficiently represent N-qubit Pauli channels for simulation if they
have few generator terms.
The equivalent Pauli error is constructed as a composition of single-Pauli channel terms
.. math::
e^{\sum_j r_j D_{P_j}} = \prod_j e^{r_j D_{P_j}}
= prod_j \left( (1 - p_j) S_I + p_j S_{P_j} \right)
where :math:`p_j = \frac12 - \frac12 e^{-2 r_j}`.
.. note::
This operator can also represent a non-physical (non-CPTP) channel if any of the
rates are negative. Non-physical operators cannot be converted to a
:class:`~.QuantumError` or used in an :class:`~.AerSimulator` simulation. You can
check if an operator is physical using the :meth:`is_cptp` method.
"""

def __init__(
self,
generators: Sequence[Pauli],
rates: Sequence[float],
):
"""Initialize a Pauli-Lindblad dissipator model.
Args:
generators: A list of Pauli's corresponding to the Lindblad dissipator generator terms.
rates: The Pauli Lindblad dissipator generator rates.
"""
self._generators = PauliList(generators)
self._rates = np.asarray(rates, dtype=float)
if self._rates.shape != (len(self._generators),):
raise NoiseError("Input generators and rates are different lengths.")
super().__init__(num_qubits=self._generators.num_qubits)

def __repr__(self):
return f"{type(self).__name__}({self.generators.to_labels()}, {self.rates.tolist()})"

def __eq__(self, other):
# Use BaseOperator eq to check type and shape
if not super().__eq__(other):
return False
lhs = self.simplify()
rhs = other.simplify()
if lhs.size != rhs.size:
return False
lpaulis, lrates = sort_paulis(lhs.generators, lhs.rates)
rpaulis, rrates = sort_paulis(rhs.generators, rhs.rates)
return np.allclose(lrates, rrates) and lpaulis == rpaulis

@property
def size(self):
"""Return the number of error circuit."""
return len(self.generators)

@property
def generators(self) -> PauliList:
"""Return the Pauli Lindblad dissipator generator terms"""
return self._generators

@property
def rates(self) -> np.ndarray:
"""Return the Lindblad dissipator generator rates"""
return self._rates

@property
def settings(self):
"""Settings for IBM RuntimeEncoder JSON encoding"""
return {
"generators": self.generators,
"rates": self.rates,
}

def ideal(self) -> bool:
"""Return True if this error object is composed only of identity operations.
Note that the identity check is best effort and up to global phase."""
return np.allclose(self.rates, 0) or not (
np.any(self.generators.z) or np.any(self.generators.x)
)

def is_cptp(self, atol: float | None = None, rtol: float | None = None) -> bool:
"""Return True if completely-positive trace-preserving (CPTP)."""
return self.is_cp(atol=atol, rtol=rtol)

def is_tp(self, atol: float | None = None, rtol: float | None = None) -> bool:
"""Test if a channel is trace-preserving (TP)"""
# pylint: disable = unused-argument
# This error is TP by construction regardless of rates.
return True

def is_cp(self, atol: float | None = None, rtol: float | None = None) -> bool:
"""Test if Choi-matrix is completely-positive (CP)"""
if atol is None:
atol = self.atol
if rtol is None:
rtol = self.rtol
neg_rates = self.rates[self.rates < 0]
return np.allclose(neg_rates, 0, atol=atol, rtol=rtol)

def tensor(self, other: PauliLindbladError) -> PauliLindbladError:
if not isinstance(other, PauliLindbladError):
raise NoiseError("other must be a PauliLindbladError")
zeros_l = np.zeros(self.num_qubits, dtype=bool)
zeros_r = np.zeros(other.num_qubits, dtype=bool)
gens_left = self.generators.tensor(Pauli((zeros_r, zeros_r)))
gens_right = other.generators.expand(Pauli((zeros_l, zeros_l)))
generators = gens_left + gens_right
rates = np.concatenate([self.rates, other.rates])
return PauliLindbladError(generators, rates)

def expand(self, other) -> PauliLindbladError:
if not isinstance(other, PauliLindbladError):
raise NoiseError("other must be a PauliLindbladError")
return other.tensor(self)

def compose(self, other, qargs=None, front=False) -> PauliLindbladError:
if qargs is None:
qargs = getattr(other, "qargs", None)
if not isinstance(other, PauliLindbladError):
raise NoiseError("other must be a PauliLindbladError")
# Validate composition dimensions and qargs match
self._op_shape.compose(other._op_shape, qargs, front)
# pylint: disable = unused-argument
padded = ScalarOp(self.num_qubits * (2,)).compose(
SparsePauliOp(other.generators, copy=False, ignore_pauli_phase=True), qargs
)
generators = self.generators + padded.paulis
rates = np.concatenate([self.rates, other.rates])
return PauliLindbladError(generators, rates)

def power(self, n: float) -> PauliLindbladError:
return PauliLindbladError(self.generators, n * self.rates)

def inverse(self) -> PauliLindbladError:
"""Return the inverse (non-CPTP) channel"""
return PauliLindbladError(self.generators, -self.rates)

def simplify(
self, atol: float | None = None, rtol: float | None = None
) -> "PauliLindbladError":
"""Simplify PauliList by combining duplicates and removing zeros.
Args:
atol (float): Optional. Absolute tolerance for checking if
coefficients are zero (Default: 1e-8).
rtol (float): Optional. relative tolerance for checking if
coefficients are zero (Default: 1e-5).
Returns:
SparsePauliOp: the simplified SparsePauliOp operator.
"""
if atol is None:
atol = self.atol
if rtol is None:
rtol = self.rtol
# Remove identity terms
non_iden = np.any(np.logical_or(self.generators.z, self.generators.x), axis=1)
simplified = SparsePauliOp(
self.generators[non_iden],
self.rates[non_iden],
copy=False,
ignore_pauli_phase=True,
).simplify(atol=atol, rtol=rtol)
return PauliLindbladError(simplified.paulis, simplified.coeffs.real)

def subsystem_errors(self) -> list[tuple[PauliLindbladError, tuple[int, ...]]]:
"""Return a list errors for the subsystem decomposed error.
.. note::
This uses a greedy algorithm to find the largest non-identity subsystem
Pauli, checks if its non identity terms are covered by any previously
selected Pauli's, and if not adds it to list of covering subsystems.
This is repeated until no generators remain.
In terms of the number of Pauli terms this has runtime
`O(num_terms * num_coverings)`,
which in the worst case is `O(num_terms ** 2)`.
Returns:
A list of pairs of component PauliLindbladErrors and subsystem indices for the
that decompose the current errors.
"""
# Find non-identity paulis we wish to cover
paulis = self.generators
non_iden = np.logical_or(paulis.z, paulis.x)

# Mask to exclude generator terms that are trivial (identities)
non_trivial = np.any(non_iden, axis=1)

# Paulis that aren't covered yet
uncovered = np.arange(non_iden.shape[0])[non_trivial]

# Indices that cover each Pauli
# Note that trivial terms will be left at -1
covered = -1 * np.ones(non_iden.shape[0], dtype=int)
coverings = []

# In general finding optimal coverings is NP-hard (I think?)
# so we do a heuristic of just greedily finding the largest
# pauli that isn't covered, and checking if it is covered
# by any previous coverings, if not adding it to coverings
# and repeat until we run out of paulis
while uncovered.size:
imax = np.argmax(np.sum(non_iden[uncovered], axis=1))
rmax = uncovered[imax]
add_covering = True
for rcov in coverings:
if np.all(non_iden[rcov][non_iden[rmax]]):
add_covering = False
covered[rmax] = rcov
break
if add_covering:
covered[rmax] = rmax
coverings.append(rmax)
uncovered = uncovered[uncovered != rmax]

# Extract subsystem errors and qinds of non-identity terms
sub_errors = []
for cover in coverings:
pinds = covered == cover
qinds = np.any(non_iden[pinds], axis=0)
sub_z = paulis.z[pinds][:, qinds]
sub_x = paulis.x[pinds][:, qinds]
sub_gens = PauliList.from_symplectic(sub_z, sub_x)
sub_err = PauliLindbladError(sub_gens, self.rates[pinds])
sub_qubits = tuple(np.where(qinds)[0])
sub_errors.append((sub_err, sub_qubits))

return sub_errors

def to_pauli_error(self, simplify: bool = True) -> PauliError:
"""Convert to a PauliError operator.
.. note::
If this objects represents an non-CPTP inverse channel with negative
rates the returned "probabilities" will be a quasi-probability
distribution containing negative values.
Args:
simplify: If True call :meth:`~.PauliError.simplify` each single
Pauli channel composition to reduce the number of duplicate terms.
Returns:
The :class:`~.PauliError` of the current Pauli channel.
"""
chan_z = np.zeros((1, self.num_qubits), dtype=bool)
chan_x = np.zeros_like(chan_z)
chan_p = np.ones(1, dtype=float)
for term_z, term_x, term_r in zip(self.generators.z, self.generators.x, self.rates):
term_p = 0.5 - 0.5 * np.exp(-2 * term_r)
chan_z = np.concatenate([chan_z, np.logical_xor(chan_z, term_z)], axis=0)
chan_x = np.concatenate([chan_x, chan_x ^ term_x])
chan_p = np.concatenate([(1 - term_p) * chan_p, term_p * chan_p])
if simplify:
error_op = PauliError(PauliList.from_symplectic(chan_z, chan_x), chan_p).simplify()
chan_z, chan_x, chan_p = (
error_op.paulis.z,
error_op.paulis.x,
error_op.probabilities,
)
return PauliError(PauliList.from_symplectic(chan_z, chan_x), chan_p)

def to_quantum_error(self) -> QuantumError:
"""Convert to a general QuantumError object."""
if not self.is_cptp():
raise NoiseError("Cannot convert non-CPTP PauliLindbladError to a QuantumError")
return self.to_pauli_error().to_quantum_error()

def to_quantumchannel(self) -> SuperOp:
"""Convert to a dense N-qubit QuantumChannel"""
return self.to_pauli_error().to_quantumchannel()

def to_dict(self):
"""Return the current error as a dictionary."""
# Assemble noise circuits for Aer simulator
qubits = list(range(self.num_qubits))
instructions = [
[{"name": "pauli", "params": [pauli.to_label()], "qubits": qubits}]
for pauli in self.generators
]
# Construct error dict
error = {
"type": "plerror",
"id": self.id,
"operations": [],
"instructions": instructions,
"rates": self.rates.tolist(),
}
return error

@staticmethod
def from_dict(error: dict) -> PauliLindbladError:
"""Implement current error from a dictionary."""
# check if dictionary
if not isinstance(error, dict):
raise NoiseError("error is not a dictionary")
# check expected keys "type, id, operations, instructions, probabilities"
if (
("type" not in error)
or ("id" not in error)
or ("operations" not in error)
or ("instructions" not in error)
or ("rates" not in error)
):
raise NoiseError("error dictionary not containing expected keys")
instructions = error["instructions"]
rates = error["rates"]
if len(instructions) != len(rates):
raise NoiseError("rates not matching with instructions")
# parse instructions and turn to noise_ops
generators = []
for inst in instructions:
if len(inst) != 1 or inst[0]["name"] != "pauli":
raise NoiseError("Invalid PauliLindbladError dict")
generators.append(inst[0]["params"][0])
return PauliLindbladError(generators, rates)
8 changes: 8 additions & 0 deletions releasenotes/notes/pauli-lindblad-error-2fccae840ceec2aa.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,8 @@
---
features:
- |
Adds a new :class:`.PauliLindbladError` quantum error subclass.
This class represents a Pauli error quantum channel generated by
Pauli-Lindblad dissipator terms. This allows for more efficient
representation and error sampling for large qubit Pauli channels
generated by sparse Pauli-lindblad terms.
Loading

0 comments on commit 47f96c3

Please sign in to comment.