-
Notifications
You must be signed in to change notification settings - Fork 1.5k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[Feature] Add roipooling cuda ops (#843)
* [Refactor] Main code modification for coordinate system refactor (#677) * [Enhance] Add script for data update (#774) * Fixed wrong config paths and fixed a bug in test * Fixed metafile * Coord sys refactor (main code) * Update test_waymo_dataset.py * Manually resolve conflict * Removed unused lines and fixed imports * remove coord2box and box2coord * update dir_limit_offset * Some minor improvements * Removed some \s in comments * Revert a change * Change Box3DMode to Coord3DMode where points are converted * Fix points_in_bbox function * Fix Imvoxelnet config * Revert adding a line * Fix rotation bug when batch size is 0 * Keep sign of dir_scores as before * Fix several comments * Add a comment * Fix docstring * Add data update scripts * Fix comments * fix import * add roipooling cuda ops * add roi extractor * add test_roi_extractor unittest * Modify setup.py to install roipooling ops * modify docstring * remove enlarge bbox in roipoint pooling * add_roipooling_ops * modify docstring Co-authored-by: Yezhen Cong <52420115+THU17cyz@users.noreply.github.com> Co-authored-by: THU17cyz <congyezhen71@hotmail.com>
- Loading branch information
Showing
8 changed files
with
407 additions
and
2 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,5 +1,9 @@ | ||
# Copyright (c) OpenMMLab. All rights reserved. | ||
from mmdet.models.roi_heads.roi_extractors import SingleRoIExtractor | ||
from .single_roiaware_extractor import Single3DRoIAwareExtractor | ||
from .single_roipoint_extractor import Single3DRoIPointExtractor | ||
|
||
__all__ = ['SingleRoIExtractor', 'Single3DRoIAwareExtractor'] | ||
__all__ = [ | ||
'SingleRoIExtractor', 'Single3DRoIAwareExtractor', | ||
'Single3DRoIPointExtractor' | ||
] |
63 changes: 63 additions & 0 deletions
63
mmdet3d/models/roi_heads/roi_extractors/single_roipoint_extractor.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,63 @@ | ||
import torch | ||
from torch import nn as nn | ||
|
||
from mmdet3d import ops | ||
from mmdet3d.core.bbox.structures import rotation_3d_in_axis | ||
from mmdet.models.builder import ROI_EXTRACTORS | ||
|
||
|
||
@ROI_EXTRACTORS.register_module() | ||
class Single3DRoIPointExtractor(nn.Module): | ||
"""Point-wise roi-aware Extractor. | ||
Extract Point-wise roi features. | ||
Args: | ||
roi_layer (dict): The config of roi layer. | ||
""" | ||
|
||
def __init__(self, roi_layer=None): | ||
super(Single3DRoIPointExtractor, self).__init__() | ||
self.roi_layer = self.build_roi_layers(roi_layer) | ||
|
||
def build_roi_layers(self, layer_cfg): | ||
"""Build roi layers using `layer_cfg`""" | ||
cfg = layer_cfg.copy() | ||
layer_type = cfg.pop('type') | ||
assert hasattr(ops, layer_type) | ||
layer_cls = getattr(ops, layer_type) | ||
roi_layers = layer_cls(**cfg) | ||
return roi_layers | ||
|
||
def forward(self, feats, coordinate, batch_inds, rois): | ||
"""Extract point-wise roi features. | ||
Args: | ||
feats (torch.FloatTensor): Point-wise features with | ||
shape (batch, npoints, channels) for pooling. | ||
coordinate (torch.FloatTensor): Coordinate of each point. | ||
batch_inds (torch.LongTensor): Indicate the batch of each point. | ||
rois (torch.FloatTensor): Roi boxes with batch indices. | ||
Returns: | ||
torch.FloatTensor: Pooled features | ||
""" | ||
rois = rois[..., 1:] | ||
rois = rois.view(batch_inds, -1, rois.shape[-1]) | ||
with torch.no_grad(): | ||
pooled_roi_feat, pooled_empty_flag = self.roi_layer( | ||
coordinate, feats, rois) | ||
|
||
# canonical transformation | ||
roi_center = rois[:, :, 0:3] | ||
pooled_roi_feat[:, :, :, 0:3] -= roi_center.unsqueeze(dim=2) | ||
pooled_roi_feat = pooled_roi_feat.view(-1, | ||
pooled_roi_feat.shape[-2], | ||
pooled_roi_feat.shape[-1]) | ||
pooled_roi_feat[:, :, 0:3] = rotation_3d_in_axis( | ||
pooled_roi_feat[:, :, 0:3], | ||
-(rois.view(-1, rois.shape[-1])[:, 6]), | ||
axis=2) | ||
pooled_roi_feat[pooled_empty_flag.view(-1) > 0] = 0 | ||
|
||
return pooled_roi_feat |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,3 @@ | ||
from .roipoint_pool3d import RoIPointPool3d | ||
|
||
__all__ = ['RoIPointPool3d'] |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,71 @@ | ||
from torch import nn as nn | ||
from torch.autograd import Function | ||
|
||
from . import roipoint_pool3d_ext | ||
|
||
|
||
class RoIPointPool3d(nn.Module): | ||
|
||
def __init__(self, num_sampled_points=512): | ||
super().__init__() | ||
""" | ||
Args: | ||
num_sampled_points (int): Number of samples in each roi | ||
""" | ||
self.num_sampled_points = num_sampled_points | ||
|
||
def forward(self, points, point_features, boxes3d): | ||
""" | ||
Args: | ||
points (torch.Tensor): Input points whose shape is BxNx3 | ||
point_features: (B, N, C) | ||
boxes3d: (B, M, 7), [x, y, z, dx, dy, dz, heading] | ||
Returns: | ||
torch.Tensor: (B, M, 512, 3 + C) pooled_features | ||
torch.Tensor: (B, M) pooled_empty_flag | ||
""" | ||
return RoIPointPool3dFunction.apply(points, point_features, boxes3d, | ||
self.num_sampled_points) | ||
|
||
|
||
class RoIPointPool3dFunction(Function): | ||
|
||
@staticmethod | ||
def forward(ctx, points, point_features, boxes3d, num_sampled_points=512): | ||
""" | ||
Args: | ||
points (torch.Tensor): Input points whose shape is (B, N, 3) | ||
point_features (torch.Tensor): Input points features shape is \ | ||
(B, N, C) | ||
boxes3d (torch.Tensor): Input bounding boxes whose shape is \ | ||
(B, M, 7) | ||
num_sampled_points (int): the num of sampled points | ||
Returns: | ||
torch.Tensor: (B, M, 512, 3 + C) pooled_features | ||
torch.Tensor: (B, M) pooled_empty_flag | ||
""" | ||
assert points.shape.__len__() == 3 and points.shape[2] == 3 | ||
batch_size, boxes_num, feature_len = points.shape[0], boxes3d.shape[ | ||
1], point_features.shape[2] | ||
pooled_boxes3d = boxes3d.view(batch_size, -1, 7) | ||
pooled_features = point_features.new_zeros( | ||
(batch_size, boxes_num, num_sampled_points, 3 + feature_len)) | ||
pooled_empty_flag = point_features.new_zeros( | ||
(batch_size, boxes_num)).int() | ||
|
||
roipoint_pool3d_ext.forward(points.contiguous(), | ||
pooled_boxes3d.contiguous(), | ||
point_features.contiguous(), | ||
pooled_features, pooled_empty_flag) | ||
|
||
return pooled_features, pooled_empty_flag | ||
|
||
@staticmethod | ||
def backward(ctx, grad_out): | ||
raise NotImplementedError | ||
|
||
|
||
if __name__ == '__main__': | ||
pass |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,66 @@ | ||
/* | ||
Modified for | ||
https://github.com/open-mmlab/OpenPCDet/blob/master/pcdet/ops/roipoint_pool3d/src/roipoint_pool3d_kernel.cu | ||
Point cloud feature pooling | ||
Written by Shaoshuai Shi | ||
All Rights Reserved 2018. | ||
*/ | ||
#include <torch/serialize/tensor.h> | ||
#include <torch/extension.h> | ||
|
||
#define CHECK_CUDA(x) do { \ | ||
if (!x.type().is_cuda()) { \ | ||
fprintf(stderr, "%s must be CUDA tensor at %s:%d\n", #x, __FILE__, __LINE__); \ | ||
exit(-1); \ | ||
} \ | ||
} while (0) | ||
#define CHECK_CONTIGUOUS(x) do { \ | ||
if (!x.is_contiguous()) { \ | ||
fprintf(stderr, "%s must be contiguous tensor at %s:%d\n", #x, __FILE__, __LINE__); \ | ||
exit(-1); \ | ||
} \ | ||
} while (0) | ||
#define CHECK_INPUT(x) CHECK_CUDA(x);CHECK_CONTIGUOUS(x) | ||
|
||
|
||
void roipool3dLauncher(int batch_size, int pts_num, int boxes_num, int feature_in_len, int sampled_pts_num, | ||
const float *xyz, const float *boxes3d, const float *pts_feature, float *pooled_features, int *pooled_empty_flag); | ||
|
||
|
||
int roipool3d_gpu(at::Tensor xyz, at::Tensor boxes3d, at::Tensor pts_feature, at::Tensor pooled_features, at::Tensor pooled_empty_flag){ | ||
// params xyz: (B, N, 3) | ||
// params boxes3d: (B, M, 7) | ||
// params pts_feature: (B, N, C) | ||
// params pooled_features: (B, M, 512, 3+C) | ||
// params pooled_empty_flag: (B, M) | ||
CHECK_INPUT(xyz); | ||
CHECK_INPUT(boxes3d); | ||
CHECK_INPUT(pts_feature); | ||
CHECK_INPUT(pooled_features); | ||
CHECK_INPUT(pooled_empty_flag); | ||
|
||
int batch_size = xyz.size(0); | ||
int pts_num = xyz.size(1); | ||
int boxes_num = boxes3d.size(1); | ||
int feature_in_len = pts_feature.size(2); | ||
int sampled_pts_num = pooled_features.size(2); | ||
|
||
|
||
const float * xyz_data = xyz.data<float>(); | ||
const float * boxes3d_data = boxes3d.data<float>(); | ||
const float * pts_feature_data = pts_feature.data<float>(); | ||
float * pooled_features_data = pooled_features.data<float>(); | ||
int * pooled_empty_flag_data = pooled_empty_flag.data<int>(); | ||
|
||
roipool3dLauncher(batch_size, pts_num, boxes_num, feature_in_len, sampled_pts_num, | ||
xyz_data, boxes3d_data, pts_feature_data, pooled_features_data, pooled_empty_flag_data); | ||
|
||
|
||
|
||
return 1; | ||
} | ||
|
||
|
||
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) { | ||
m.def("forward", &roipool3d_gpu, "roipool3d forward (CUDA)"); | ||
} |
168 changes: 168 additions & 0 deletions
168
mmdet3d/ops/roipoint_pool3d/src/roipoint_pool3d_kernel.cu
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,168 @@ | ||
/* | ||
Modified from | ||
https://github.com/sshaoshuai/PCDet/blob/master/pcdet/ops/roipoint_pool3d/src/roipoint_pool3d_kernel.cu | ||
Point cloud feature pooling | ||
Written by Shaoshuai Shi | ||
All Rights Reserved 2018. | ||
*/ | ||
|
||
#include <math.h> | ||
#include <stdio.h> | ||
|
||
#define THREADS_PER_BLOCK 256 | ||
#define DIVUP(m,n) ((m) / (n) + ((m) % (n) > 0)) | ||
// #define DEBUG | ||
|
||
__device__ inline void lidar_to_local_coords(float shift_x, float shift_y, | ||
float rz, float &local_x, | ||
float &local_y) { | ||
float cosa = cos(-rz), sina = sin(-rz); | ||
local_x = shift_x * cosa + shift_y * (-sina); | ||
local_y = shift_x * sina + shift_y * cosa; | ||
} | ||
|
||
__device__ inline int check_pt_in_box3d(const float *pt, const float *box3d, | ||
float &local_x, float &local_y) { | ||
// param pt: (x, y, z) | ||
// param box3d: (cx, cy, cz, dx, dy, dz, rz) in LiDAR coordinate, cz in the | ||
// bottom center | ||
float x = pt[0], y = pt[1], z = pt[2]; | ||
float cx = box3d[0], cy = box3d[1], cz = box3d[2]; | ||
float dx = box3d[3], dy = box3d[4], dz = box3d[5], rz = box3d[6]; | ||
cz += dz / 2.0; // shift to the center since cz in box3d is the bottom center | ||
|
||
if (fabsf(z - cz) > dz / 2.0) return 0; | ||
lidar_to_local_coords(x - cx, y - cy, rz, local_x, local_y); | ||
float in_flag = (local_x > -dx / 2.0) & (local_x < dx / 2.0) & | ||
(local_y > -dy / 2.0) & (local_y < dy / 2.0); | ||
return in_flag; | ||
} | ||
|
||
__global__ void assign_pts_to_box3d(int batch_size, int pts_num, int boxes_num, const float *xyz, const float *boxes3d, int *pts_assign){ | ||
// params xyz: (B, N, 3) | ||
// params boxes3d: (B, M, 7) | ||
// params pts_assign: (B, N, M): idx of the corresponding box3d, -1 means background points | ||
int pt_idx = blockIdx.x * blockDim.x + threadIdx.x; | ||
int box_idx = blockIdx.y; | ||
int bs_idx = blockIdx.z; | ||
|
||
if (pt_idx >= pts_num || box_idx >= boxes_num || bs_idx >= batch_size){ | ||
return; | ||
} | ||
int assign_idx = bs_idx * pts_num * boxes_num + pt_idx * boxes_num + box_idx; | ||
pts_assign[assign_idx] = 0; | ||
|
||
int box_offset = bs_idx * boxes_num * 7 + box_idx * 7; | ||
int pt_offset = bs_idx * pts_num * 3 + pt_idx * 3; | ||
|
||
|
||
float local_x = 0, local_y = 0; | ||
int cur_in_flag = check_pt_in_box3d(xyz + pt_offset, boxes3d + box_offset, local_x, local_y); | ||
pts_assign[assign_idx] = cur_in_flag; | ||
// printf("bs=%d, pt=%d, in=%d\n", bs_idx, pt_idx, pts_assign[bs_idx * pts_num + pt_idx]); | ||
} | ||
|
||
|
||
__global__ void get_pooled_idx(int batch_size, int pts_num, int boxes_num, int sampled_pts_num, | ||
const int *pts_assign, int *pts_idx, int *pooled_empty_flag){ | ||
// params xyz: (B, N, 3) | ||
// params pts_feature: (B, N, C) | ||
// params pts_assign: (B, N) | ||
// params pts_idx: (B, M, 512) | ||
// params pooled_empty_flag: (B, M) | ||
|
||
int boxes_idx = blockIdx.x * blockDim.x + threadIdx.x; | ||
if (boxes_idx >= boxes_num){ | ||
return; | ||
} | ||
|
||
int bs_idx = blockIdx.y; | ||
|
||
int cnt = 0; | ||
for (int k = 0; k < pts_num; k++){ | ||
if (pts_assign[bs_idx * pts_num * boxes_num + k * boxes_num + boxes_idx]){ | ||
if (cnt < sampled_pts_num){ | ||
pts_idx[bs_idx * boxes_num * sampled_pts_num + boxes_idx * sampled_pts_num + cnt] = k; | ||
cnt++; | ||
} | ||
else break; | ||
} | ||
} | ||
|
||
if (cnt == 0){ | ||
pooled_empty_flag[bs_idx * boxes_num + boxes_idx] = 1; | ||
} | ||
else if (cnt < sampled_pts_num){ | ||
// duplicate same points for sampling | ||
for (int k = cnt; k < sampled_pts_num; k++){ | ||
int duplicate_idx = k % cnt; | ||
int base_offset = bs_idx * boxes_num * sampled_pts_num + boxes_idx * sampled_pts_num; | ||
pts_idx[base_offset + k] = pts_idx[base_offset + duplicate_idx]; | ||
} | ||
} | ||
} | ||
|
||
|
||
__global__ void roipool3d_forward(int batch_size, int pts_num, int boxes_num, int feature_in_len, int sampled_pts_num, | ||
const float *xyz, const int *pts_idx, const float *pts_feature, | ||
float *pooled_features, int *pooled_empty_flag){ | ||
// params xyz: (B, N, 3) | ||
// params pts_idx: (B, M, 512) | ||
// params pts_feature: (B, N, C) | ||
// params pooled_features: (B, M, 512, 3+C) | ||
// params pooled_empty_flag: (B, M) | ||
|
||
int sample_pt_idx = blockIdx.x * blockDim.x + threadIdx.x; | ||
int box_idx = blockIdx.y; | ||
int bs_idx = blockIdx.z; | ||
|
||
if (sample_pt_idx >= sampled_pts_num || box_idx >= boxes_num || bs_idx >= batch_size){ | ||
return; | ||
} | ||
|
||
if (pooled_empty_flag[bs_idx * boxes_num + box_idx]){ | ||
return; | ||
} | ||
|
||
int temp_idx = bs_idx * boxes_num * sampled_pts_num + box_idx * sampled_pts_num + sample_pt_idx; | ||
int src_pt_idx = pts_idx[temp_idx]; | ||
int dst_feature_offset = temp_idx * (3 + feature_in_len); | ||
|
||
for (int j = 0; j < 3; j++) | ||
pooled_features[dst_feature_offset + j] = xyz[bs_idx * pts_num * 3 + src_pt_idx * 3 + j]; | ||
|
||
int src_feature_offset = bs_idx * pts_num * feature_in_len + src_pt_idx * feature_in_len; | ||
for (int j = 0; j < feature_in_len; j++) | ||
pooled_features[dst_feature_offset + 3 + j] = pts_feature[src_feature_offset + j]; | ||
} | ||
|
||
|
||
void roipool3dLauncher(int batch_size, int pts_num, int boxes_num, int feature_in_len, int sampled_pts_num, | ||
const float *xyz, const float *boxes3d, const float *pts_feature, float *pooled_features, int *pooled_empty_flag){ | ||
|
||
// printf("batch_size=%d, pts_num=%d, boxes_num=%d\n", batch_size, pts_num, boxes_num); | ||
int *pts_assign = NULL; | ||
cudaMalloc(&pts_assign, batch_size * pts_num * boxes_num * sizeof(int)); // (batch_size, N, M) | ||
// cudaMemset(&pts_assign, -1, batch_size * pts_num * boxes_num * sizeof(int)); | ||
|
||
dim3 blocks(DIVUP(pts_num, THREADS_PER_BLOCK), boxes_num, batch_size); // blockIdx.x(col), blockIdx.y(row) | ||
dim3 threads(THREADS_PER_BLOCK); | ||
assign_pts_to_box3d<<<blocks, threads>>>(batch_size, pts_num, boxes_num, xyz, boxes3d, pts_assign); | ||
|
||
int *pts_idx = NULL; | ||
cudaMalloc(&pts_idx, batch_size * boxes_num * sampled_pts_num * sizeof(int)); // (batch_size, M, sampled_pts_num) | ||
|
||
dim3 blocks2(DIVUP(boxes_num, THREADS_PER_BLOCK), batch_size); // blockIdx.x(col), blockIdx.y(row) | ||
get_pooled_idx<<<blocks2, threads>>>(batch_size, pts_num, boxes_num, sampled_pts_num, pts_assign, pts_idx, pooled_empty_flag); | ||
|
||
dim3 blocks_pool(DIVUP(sampled_pts_num, THREADS_PER_BLOCK), boxes_num, batch_size); | ||
roipool3d_forward<<<blocks_pool, threads>>>(batch_size, pts_num, boxes_num, feature_in_len, sampled_pts_num, | ||
xyz, pts_idx, pts_feature, pooled_features, pooled_empty_flag); | ||
|
||
cudaFree(pts_assign); | ||
cudaFree(pts_idx); | ||
|
||
#ifdef DEBUG | ||
cudaDeviceSynchronize(); // for using printf in kernel function | ||
#endif | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.