-
Notifications
You must be signed in to change notification settings - Fork 1.3k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
[Feature][MMSIG] Add UniFormer Pose Estimation to Projects folder #2501
Conversation
Codecov ReportPatch coverage has no change and project coverage change:
Additional details and impacted files@@ Coverage Diff @@
## dev-1.x #2501 +/- ##
===========================================
- Coverage 80.82% 80.77% -0.05%
===========================================
Files 230 230
Lines 14437 14437
Branches 2498 2498
===========================================
- Hits 11668 11662 -6
- Misses 2129 2136 +7
+ Partials 640 639 -1
Flags with carried forward coverage won't be shown. Click here to find out more. ☔ View full report in Codecov by Sentry. |
test result sample of Loads checkpoint by local backend from path: projects/uniformer/pose_model/top_down_384x288_global_small.pth
07/21 17:46:03 - mmengine - INFO - Load checkpoint from projects/uniformer/pose_model/top_down_384x288_global_small.pth
07/21 17:46:53 - mmengine - INFO - Epoch(test) [ 50/407] eta: 0:05:55 time: 0.996443 data_time: 0.062145 memory: 6542
07/21 17:47:39 - mmengine - INFO - Epoch(test) [100/407] eta: 0:04:56 time: 0.933922 data_time: 0.034630 memory: 6542
07/21 17:48:26 - mmengine - INFO - Epoch(test) [150/407] eta: 0:04:05 time: 0.930108 data_time: 0.034428 memory: 6542
07/21 17:49:13 - mmengine - INFO - Epoch(test) [200/407] eta: 0:03:16 time: 0.937324 data_time: 0.039884 memory: 6542
07/21 17:50:00 - mmengine - INFO - Epoch(test) [250/407] eta: 0:02:28 time: 0.938158 data_time: 0.035234 memory: 6542
07/21 17:50:46 - mmengine - INFO - Epoch(test) [300/407] eta: 0:01:41 time: 0.929169 data_time: 0.036719 memory: 6542
07/21 17:51:32 - mmengine - INFO - Epoch(test) [350/407] eta: 0:00:53 time: 0.927817 data_time: 0.034636 memory: 6542
07/21 17:52:19 - mmengine - INFO - Epoch(test) [400/407] eta: 0:00:06 time: 0.929423 data_time: 0.035859 memory: 6542
07/21 17:52:39 - mmengine - INFO - Evaluating CocoMetric...
Loading and preparing results...
DONE (t=1.54s)
creating index...
index created!
Running per image evaluation...
Evaluate annotation type *keypoints*
DONE (t=3.81s).
Accumulating evaluation results...
DONE (t=0.12s).
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets= 20 ] = 0.759
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets= 20 ] = 0.906
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets= 20 ] = 0.830
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets= 20 ] = 0.722
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets= 20 ] = 0.830
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 20 ] = 0.810
Average Recall (AR) @[ IoU=0.50 | area= all | maxDets= 20 ] = 0.944
Average Recall (AR) @[ IoU=0.75 | area= all | maxDets= 20 ] = 0.873
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets= 20 ] = 0.768
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets= 20 ] = 0.873
07/21 17:52:44 - mmengine - INFO - Epoch(test) [407/407] coco/AP: 0.758717 coco/AP .5: 0.906003 coco/AP .75: 0.829609 coco/AP (M): 0.721588 coco/AP (L): 0.829766 coco/AR: 0.810217 coco/AR .5: 0.943955 coco/AR .75: 0.873111 coco/AR (M): 0.767850 coco/AR (L): 0.872612 data_time: 0.039037 time: 0.939339 |
With the latest commit, I have fixed the error which blocked the training process, and now I can run training on a single GPU, and the log is quite similar to the original one. Here is a part of it: 2023/07/22 14:32:59 - mmengine - INFO - Distributed training is not used, all SyncBatchNorm (SyncBN) layers in the model will be automatically reverted to BatchNormXd layers if they are used.
2023/07/22 14:32:59 - mmengine - INFO - Hooks will be executed in the following order:
before_run:
(VERY_HIGH ) RuntimeInfoHook
(BELOW_NORMAL) LoggerHook
--------------------
before_train:
(VERY_HIGH ) RuntimeInfoHook
(NORMAL ) IterTimerHook
(VERY_LOW ) CheckpointHook
--------------------
before_train_epoch:
(VERY_HIGH ) RuntimeInfoHook
(NORMAL ) IterTimerHook
(NORMAL ) DistSamplerSeedHook
--------------------
before_train_iter:
(VERY_HIGH ) RuntimeInfoHook
(NORMAL ) IterTimerHook
--------------------
after_train_iter:
(VERY_HIGH ) RuntimeInfoHook
(NORMAL ) IterTimerHook
(BELOW_NORMAL) LoggerHook
(LOW ) ParamSchedulerHook
(VERY_LOW ) CheckpointHook
--------------------
after_train_epoch:
(NORMAL ) IterTimerHook
(NORMAL ) SyncBuffersHook
(LOW ) ParamSchedulerHook
(VERY_LOW ) CheckpointHook
--------------------
before_val_epoch:
(NORMAL ) IterTimerHook
(NORMAL ) SyncBuffersHook
--------------------
before_val_iter:
(NORMAL ) IterTimerHook
--------------------
after_val_iter:
(NORMAL ) IterTimerHook
(NORMAL ) PoseVisualizationHook
(BELOW_NORMAL) LoggerHook
--------------------
after_val_epoch:
(VERY_HIGH ) RuntimeInfoHook
(NORMAL ) IterTimerHook
(BELOW_NORMAL) LoggerHook
(LOW ) ParamSchedulerHook
(VERY_LOW ) CheckpointHook
--------------------
after_train:
(VERY_LOW ) CheckpointHook
--------------------
before_test_epoch:
(NORMAL ) IterTimerHook
--------------------
before_test_iter:
(NORMAL ) IterTimerHook
--------------------
after_test_iter:
(NORMAL ) IterTimerHook
(NORMAL ) PoseVisualizationHook
(BELOW_NORMAL) LoggerHook
--------------------
after_test_epoch:
(VERY_HIGH ) RuntimeInfoHook
(NORMAL ) IterTimerHook
(BELOW_NORMAL) LoggerHook
--------------------
after_run:
(BELOW_NORMAL) LoggerHook
--------------------
2023/07/22 14:34:04 - mmengine - INFO - LR is set based on batch size of 1024 and the current batch size is 32. Scaling the original LR by 0.03125.
2023/07/22 14:34:10 - mmengine - INFO - load model from: /root/mmpose/projects/uniformer/pretrained/uniformer_small_in1k.pth
2023/07/22 14:34:10 - mmengine - INFO - Loads checkpoint by local backend from path: /root/mmpose/projects/uniformer/pretrained/uniformer_small_in1k.pth
2023/07/22 14:34:10 - mmengine - WARNING - The model and loaded state dict do not match exactly
unexpected key in source state_dict: model
missing keys in source state_dict: patch_embed1.norm.weight, patch_embed1.norm.bias, patch_embed1.proj.weight, patch_embed1.proj.bias, patch_embed2.norm.weight, patch_embed2.norm.bias, patch_embed2.proj.weight, patch_embed2.proj.bias, patch_embed3.norm.weight, patch_embed3.norm.bias, patch_embed3.proj.weight, patch_embed3.proj.bias, patch_embed4.norm.weight, patch_embed4.norm.bias, patch_embed4.proj.weight, patch_embed4.proj.bias, blocks1.0.pos_embed.weight, blocks1.0.pos_embed.bias, blocks1.0.norm1.weight, blocks1.0.norm1.bias, blocks1.0.norm1.running_mean, blocks1.0.norm1.running_var, blocks1.0.conv1.weight, blocks1.0.conv1.bias, blocks1.0.conv2.weight, blocks1.0.conv2.bias, blocks1.0.attn.weight, blocks1.0.attn.bias, blocks1.0.norm2.weight, blocks1.0.norm2.bias, blocks1.0.norm2.running_mean, blocks1.0.norm2.running_var, blocks1.0.mlp.fc1.weight, blocks1.0.mlp.fc1.bias, blocks1.0.mlp.fc2.weight, blocks1.0.mlp.fc2.bias, blocks1.1.pos_embed.weight, blocks1.1.pos_embed.bias, blocks1.1.norm1.weight, blocks1.1.norm1.bias, blocks1.1.norm1.running_mean, blocks1.1.norm1.running_var, blocks1.1.conv1.weight, blocks1.1.conv1.bias, blocks1.1.conv2.weight, blocks1.1.conv2.bias, blocks1.1.attn.weight, blocks1.1.attn.bias, blocks1.1.norm2.weight, blocks1.1.norm2.bias, blocks1.1.norm2.running_mean, blocks1.1.norm2.running_var, blocks1.1.mlp.fc1.weight, blocks1.1.mlp.fc1.bias, blocks1.1.mlp.fc2.weight, blocks1.1.mlp.fc2.bias, blocks1.2.pos_embed.weight, blocks1.2.pos_embed.bias, blocks1.2.norm1.weight, blocks1.2.norm1.bias, blocks1.2.norm1.running_mean, blocks1.2.norm1.running_var, blocks1.2.conv1.weight, blocks1.2.conv1.bias, blocks1.2.conv2.weight, blocks1.2.conv2.bias, blocks1.2.attn.weight, blocks1.2.attn.bias, blocks1.2.norm2.weight, blocks1.2.norm2.bias, blocks1.2.norm2.running_mean, blocks1.2.norm2.running_var, blocks1.2.mlp.fc1.weight, blocks1.2.mlp.fc1.bias, blocks1.2.mlp.fc2.weight, blocks1.2.mlp.fc2.bias, norm1.weight, norm1.bias, blocks2.0.pos_embed.weight, blocks2.0.pos_embed.bias, blocks2.0.norm1.weight, blocks2.0.norm1.bias, blocks2.0.norm1.running_mean, blocks2.0.norm1.running_var, blocks2.0.conv1.weight, blocks2.0.conv1.bias, blocks2.0.conv2.weight, blocks2.0.conv2.bias, blocks2.0.attn.weight, blocks2.0.attn.bias, blocks2.0.norm2.weight, blocks2.0.norm2.bias, blocks2.0.norm2.running_mean, blocks2.0.norm2.running_var, blocks2.0.mlp.fc1.weight, blocks2.0.mlp.fc1.bias, blocks2.0.mlp.fc2.weight, blocks2.0.mlp.fc2.bias, blocks2.1.pos_embed.weight, blocks2.1.pos_embed.bias, blocks2.1.norm1.weight, blocks2.1.norm1.bias, blocks2.1.norm1.running_mean, blocks2.1.norm1.running_var, blocks2.1.conv1.weight, blocks2.1.conv1.bias, blocks2.1.conv2.weight, blocks2.1.conv2.bias, blocks2.1.attn.weight, blocks2.1.attn.bias, blocks2.1.norm2.weight, blocks2.1.norm2.bias, blocks2.1.norm2.running_mean, blocks2.1.norm2.running_var, blocks2.1.mlp.fc1.weight, blocks2.1.mlp.fc1.bias, blocks2.1.mlp.fc2.weight, blocks2.1.mlp.fc2.bias, blocks2.2.pos_embed.weight, blocks2.2.pos_embed.bias, blocks2.2.norm1.weight, blocks2.2.norm1.bias, blocks2.2.norm1.running_mean, blocks2.2.norm1.running_var, blocks2.2.conv1.weight, blocks2.2.conv1.bias, blocks2.2.conv2.weight, blocks2.2.conv2.bias, blocks2.2.attn.weight, blocks2.2.attn.bias, blocks2.2.norm2.weight, blocks2.2.norm2.bias, blocks2.2.norm2.running_mean, blocks2.2.norm2.running_var, blocks2.2.mlp.fc1.weight, blocks2.2.mlp.fc1.bias, blocks2.2.mlp.fc2.weight, blocks2.2.mlp.fc2.bias, blocks2.3.pos_embed.weight, blocks2.3.pos_embed.bias, blocks2.3.norm1.weight, blocks2.3.norm1.bias, blocks2.3.norm1.running_mean, blocks2.3.norm1.running_var, blocks2.3.conv1.weight, blocks2.3.conv1.bias, blocks2.3.conv2.weight, blocks2.3.conv2.bias, blocks2.3.attn.weight, blocks2.3.attn.bias, blocks2.3.norm2.weight, blocks2.3.norm2.bias, blocks2.3.norm2.running_mean, blocks2.3.norm2.running_var, blocks2.3.mlp.fc1.weight, blocks2.3.mlp.fc1.bias, blocks2.3.mlp.fc2.weight, blocks2.3.mlp.fc2.bias, norm2.weight, norm2.bias, blocks3.0.pos_embed.weight, blocks3.0.pos_embed.bias, blocks3.0.norm1.weight, blocks3.0.norm1.bias, blocks3.0.attn.qkv.weight, blocks3.0.attn.qkv.bias, blocks3.0.attn.proj.weight, blocks3.0.attn.proj.bias, blocks3.0.norm2.weight, blocks3.0.norm2.bias, blocks3.0.mlp.fc1.weight, blocks3.0.mlp.fc1.bias, blocks3.0.mlp.fc2.weight, blocks3.0.mlp.fc2.bias, blocks3.1.pos_embed.weight, blocks3.1.pos_embed.bias, blocks3.1.norm1.weight, blocks3.1.norm1.bias, blocks3.1.attn.qkv.weight, blocks3.1.attn.qkv.bias, blocks3.1.attn.proj.weight, blocks3.1.attn.proj.bias, blocks3.1.norm2.weight, blocks3.1.norm2.bias, blocks3.1.mlp.fc1.weight, blocks3.1.mlp.fc1.bias, blocks3.1.mlp.fc2.weight, blocks3.1.mlp.fc2.bias, blocks3.2.pos_embed.weight, blocks3.2.pos_embed.bias, blocks3.2.norm1.weight, blocks3.2.norm1.bias, blocks3.2.attn.qkv.weight, blocks3.2.attn.qkv.bias, blocks3.2.attn.proj.weight, blocks3.2.attn.proj.bias, blocks3.2.norm2.weight, blocks3.2.norm2.bias, blocks3.2.mlp.fc1.weight, blocks3.2.mlp.fc1.bias, blocks3.2.mlp.fc2.weight, blocks3.2.mlp.fc2.bias, blocks3.3.pos_embed.weight, blocks3.3.pos_embed.bias, blocks3.3.norm1.weight, blocks3.3.norm1.bias, blocks3.3.attn.qkv.weight, blocks3.3.attn.qkv.bias, blocks3.3.attn.proj.weight, blocks3.3.attn.proj.bias, blocks3.3.norm2.weight, blocks3.3.norm2.bias, blocks3.3.mlp.fc1.weight, blocks3.3.mlp.fc1.bias, blocks3.3.mlp.fc2.weight, blocks3.3.mlp.fc2.bias, blocks3.4.pos_embed.weight, blocks3.4.pos_embed.bias, blocks3.4.norm1.weight, blocks3.4.norm1.bias, blocks3.4.attn.qkv.weight, blocks3.4.attn.qkv.bias, blocks3.4.attn.proj.weight, blocks3.4.attn.proj.bias, blocks3.4.norm2.weight, blocks3.4.norm2.bias, blocks3.4.mlp.fc1.weight, blocks3.4.mlp.fc1.bias, blocks3.4.mlp.fc2.weight, blocks3.4.mlp.fc2.bias, blocks3.5.pos_embed.weight, blocks3.5.pos_embed.bias, blocks3.5.norm1.weight, blocks3.5.norm1.bias, blocks3.5.attn.qkv.weight, blocks3.5.attn.qkv.bias, blocks3.5.attn.proj.weight, blocks3.5.attn.proj.bias, blocks3.5.norm2.weight, blocks3.5.norm2.bias, blocks3.5.mlp.fc1.weight, blocks3.5.mlp.fc1.bias, blocks3.5.mlp.fc2.weight, blocks3.5.mlp.fc2.bias, blocks3.6.pos_embed.weight, blocks3.6.pos_embed.bias, blocks3.6.norm1.weight, blocks3.6.norm1.bias, blocks3.6.attn.qkv.weight, blocks3.6.attn.qkv.bias, blocks3.6.attn.proj.weight, blocks3.6.attn.proj.bias, blocks3.6.norm2.weight, blocks3.6.norm2.bias, blocks3.6.mlp.fc1.weight, blocks3.6.mlp.fc1.bias, blocks3.6.mlp.fc2.weight, blocks3.6.mlp.fc2.bias, blocks3.7.pos_embed.weight, blocks3.7.pos_embed.bias, blocks3.7.norm1.weight, blocks3.7.norm1.bias, blocks3.7.attn.qkv.weight, blocks3.7.attn.qkv.bias, blocks3.7.attn.proj.weight, blocks3.7.attn.proj.bias, blocks3.7.norm2.weight, blocks3.7.norm2.bias, blocks3.7.mlp.fc1.weight, blocks3.7.mlp.fc1.bias, blocks3.7.mlp.fc2.weight, blocks3.7.mlp.fc2.bias, norm3.weight, norm3.bias, blocks4.0.pos_embed.weight, blocks4.0.pos_embed.bias, blocks4.0.norm1.weight, blocks4.0.norm1.bias, blocks4.0.attn.qkv.weight, blocks4.0.attn.qkv.bias, blocks4.0.attn.proj.weight, blocks4.0.attn.proj.bias, blocks4.0.norm2.weight, blocks4.0.norm2.bias, blocks4.0.mlp.fc1.weight, blocks4.0.mlp.fc1.bias, blocks4.0.mlp.fc2.weight, blocks4.0.mlp.fc2.bias, blocks4.1.pos_embed.weight, blocks4.1.pos_embed.bias, blocks4.1.norm1.weight, blocks4.1.norm1.bias, blocks4.1.attn.qkv.weight, blocks4.1.attn.qkv.bias, blocks4.1.attn.proj.weight, blocks4.1.attn.proj.bias, blocks4.1.norm2.weight, blocks4.1.norm2.bias, blocks4.1.mlp.fc1.weight, blocks4.1.mlp.fc1.bias, blocks4.1.mlp.fc2.weight, blocks4.1.mlp.fc2.bias, blocks4.2.pos_embed.weight, blocks4.2.pos_embed.bias, blocks4.2.norm1.weight, blocks4.2.norm1.bias, blocks4.2.attn.qkv.weight, blocks4.2.attn.qkv.bias, blocks4.2.attn.proj.weight, blocks4.2.attn.proj.bias, blocks4.2.norm2.weight, blocks4.2.norm2.bias, blocks4.2.mlp.fc1.weight, blocks4.2.mlp.fc1.bias, blocks4.2.mlp.fc2.weight, blocks4.2.mlp.fc2.bias, norm4.weight, norm4.bias
Name of parameter - Initialization information
backbone.patch_embed1.norm.weight - torch.Size([64]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.patch_embed1.norm.bias - torch.Size([64]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.patch_embed1.proj.weight - torch.Size([64, 3, 4, 4]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.patch_embed1.proj.bias - torch.Size([64]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.patch_embed2.norm.weight - torch.Size([128]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.patch_embed2.norm.bias - torch.Size([128]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.patch_embed2.proj.weight - torch.Size([128, 64, 2, 2]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.patch_embed2.proj.bias - torch.Size([128]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.patch_embed3.norm.weight - torch.Size([320]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.patch_embed3.norm.bias - torch.Size([320]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.patch_embed3.proj.weight - torch.Size([320, 128, 2, 2]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.patch_embed3.proj.bias - torch.Size([320]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.patch_embed4.norm.weight - torch.Size([512]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.patch_embed4.norm.bias - torch.Size([512]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.patch_embed4.proj.weight - torch.Size([512, 320, 2, 2]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.patch_embed4.proj.bias - torch.Size([512]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks1.0.pos_embed.weight - torch.Size([64, 1, 3, 3]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks1.0.pos_embed.bias - torch.Size([64]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks1.0.norm1.weight - torch.Size([64]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks1.0.norm1.bias - torch.Size([64]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks1.0.conv1.weight - torch.Size([64, 64, 1, 1]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks1.0.conv1.bias - torch.Size([64]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks1.0.conv2.weight - torch.Size([64, 64, 1, 1]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks1.0.conv2.bias - torch.Size([64]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks1.0.attn.weight - torch.Size([64, 1, 5, 5]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks1.0.attn.bias - torch.Size([64]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks1.0.norm2.weight - torch.Size([64]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks1.0.norm2.bias - torch.Size([64]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks1.0.mlp.fc1.weight - torch.Size([256, 64, 1, 1]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks1.0.mlp.fc1.bias - torch.Size([256]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks1.0.mlp.fc2.weight - torch.Size([64, 256, 1, 1]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks1.0.mlp.fc2.bias - torch.Size([64]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks1.1.pos_embed.weight - torch.Size([64, 1, 3, 3]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks1.1.pos_embed.bias - torch.Size([64]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks1.1.norm1.weight - torch.Size([64]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks1.1.norm1.bias - torch.Size([64]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks1.1.conv1.weight - torch.Size([64, 64, 1, 1]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks1.1.conv1.bias - torch.Size([64]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks1.1.conv2.weight - torch.Size([64, 64, 1, 1]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks1.1.conv2.bias - torch.Size([64]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks1.1.attn.weight - torch.Size([64, 1, 5, 5]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks1.1.attn.bias - torch.Size([64]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks1.1.norm2.weight - torch.Size([64]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks1.1.norm2.bias - torch.Size([64]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks1.1.mlp.fc1.weight - torch.Size([256, 64, 1, 1]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks1.1.mlp.fc1.bias - torch.Size([256]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks1.1.mlp.fc2.weight - torch.Size([64, 256, 1, 1]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks1.1.mlp.fc2.bias - torch.Size([64]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks1.2.pos_embed.weight - torch.Size([64, 1, 3, 3]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks1.2.pos_embed.bias - torch.Size([64]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks1.2.norm1.weight - torch.Size([64]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks1.2.norm1.bias - torch.Size([64]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks1.2.conv1.weight - torch.Size([64, 64, 1, 1]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks1.2.conv1.bias - torch.Size([64]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks1.2.conv2.weight - torch.Size([64, 64, 1, 1]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks1.2.conv2.bias - torch.Size([64]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks1.2.attn.weight - torch.Size([64, 1, 5, 5]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks1.2.attn.bias - torch.Size([64]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks1.2.norm2.weight - torch.Size([64]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks1.2.norm2.bias - torch.Size([64]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks1.2.mlp.fc1.weight - torch.Size([256, 64, 1, 1]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks1.2.mlp.fc1.bias - torch.Size([256]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks1.2.mlp.fc2.weight - torch.Size([64, 256, 1, 1]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks1.2.mlp.fc2.bias - torch.Size([64]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.norm1.weight - torch.Size([64]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.norm1.bias - torch.Size([64]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks2.0.pos_embed.weight - torch.Size([128, 1, 3, 3]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks2.0.pos_embed.bias - torch.Size([128]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks2.0.norm1.weight - torch.Size([128]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks2.0.norm1.bias - torch.Size([128]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks2.0.conv1.weight - torch.Size([128, 128, 1, 1]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks2.0.conv1.bias - torch.Size([128]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks2.0.conv2.weight - torch.Size([128, 128, 1, 1]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks2.0.conv2.bias - torch.Size([128]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks2.0.attn.weight - torch.Size([128, 1, 5, 5]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks2.0.attn.bias - torch.Size([128]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks2.0.norm2.weight - torch.Size([128]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks2.0.norm2.bias - torch.Size([128]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks2.0.mlp.fc1.weight - torch.Size([512, 128, 1, 1]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks2.0.mlp.fc1.bias - torch.Size([512]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks2.0.mlp.fc2.weight - torch.Size([128, 512, 1, 1]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks2.0.mlp.fc2.bias - torch.Size([128]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks2.1.pos_embed.weight - torch.Size([128, 1, 3, 3]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks2.1.pos_embed.bias - torch.Size([128]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks2.1.norm1.weight - torch.Size([128]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks2.1.norm1.bias - torch.Size([128]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks2.1.conv1.weight - torch.Size([128, 128, 1, 1]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks2.1.conv1.bias - torch.Size([128]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks2.1.conv2.weight - torch.Size([128, 128, 1, 1]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks2.1.conv2.bias - torch.Size([128]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks2.1.attn.weight - torch.Size([128, 1, 5, 5]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks2.1.attn.bias - torch.Size([128]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks2.1.norm2.weight - torch.Size([128]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks2.1.norm2.bias - torch.Size([128]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks2.1.mlp.fc1.weight - torch.Size([512, 128, 1, 1]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks2.1.mlp.fc1.bias - torch.Size([512]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks2.1.mlp.fc2.weight - torch.Size([128, 512, 1, 1]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks2.1.mlp.fc2.bias - torch.Size([128]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks2.2.pos_embed.weight - torch.Size([128, 1, 3, 3]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks2.2.pos_embed.bias - torch.Size([128]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks2.2.norm1.weight - torch.Size([128]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks2.2.norm1.bias - torch.Size([128]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks2.2.conv1.weight - torch.Size([128, 128, 1, 1]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks2.2.conv1.bias - torch.Size([128]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks2.2.conv2.weight - torch.Size([128, 128, 1, 1]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks2.2.conv2.bias - torch.Size([128]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks2.2.attn.weight - torch.Size([128, 1, 5, 5]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks2.2.attn.bias - torch.Size([128]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks2.2.norm2.weight - torch.Size([128]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks2.2.norm2.bias - torch.Size([128]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks2.2.mlp.fc1.weight - torch.Size([512, 128, 1, 1]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks2.2.mlp.fc1.bias - torch.Size([512]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks2.2.mlp.fc2.weight - torch.Size([128, 512, 1, 1]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks2.2.mlp.fc2.bias - torch.Size([128]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks2.3.pos_embed.weight - torch.Size([128, 1, 3, 3]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks2.3.pos_embed.bias - torch.Size([128]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks2.3.norm1.weight - torch.Size([128]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks2.3.norm1.bias - torch.Size([128]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks2.3.conv1.weight - torch.Size([128, 128, 1, 1]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks2.3.conv1.bias - torch.Size([128]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks2.3.conv2.weight - torch.Size([128, 128, 1, 1]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks2.3.conv2.bias - torch.Size([128]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks2.3.attn.weight - torch.Size([128, 1, 5, 5]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks2.3.attn.bias - torch.Size([128]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks2.3.norm2.weight - torch.Size([128]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks2.3.norm2.bias - torch.Size([128]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks2.3.mlp.fc1.weight - torch.Size([512, 128, 1, 1]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks2.3.mlp.fc1.bias - torch.Size([512]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks2.3.mlp.fc2.weight - torch.Size([128, 512, 1, 1]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks2.3.mlp.fc2.bias - torch.Size([128]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.norm2.weight - torch.Size([128]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.norm2.bias - torch.Size([128]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks3.0.pos_embed.weight - torch.Size([320, 1, 3, 3]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks3.0.pos_embed.bias - torch.Size([320]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks3.0.norm1.weight - torch.Size([320]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks3.0.norm1.bias - torch.Size([320]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks3.0.attn.qkv.weight - torch.Size([960, 320]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks3.0.attn.qkv.bias - torch.Size([960]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks3.0.attn.proj.weight - torch.Size([320, 320]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks3.0.attn.proj.bias - torch.Size([320]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks3.0.norm2.weight - torch.Size([320]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks3.0.norm2.bias - torch.Size([320]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks3.0.mlp.fc1.weight - torch.Size([1280, 320]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks3.0.mlp.fc1.bias - torch.Size([1280]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks3.0.mlp.fc2.weight - torch.Size([320, 1280]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks3.0.mlp.fc2.bias - torch.Size([320]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks3.1.pos_embed.weight - torch.Size([320, 1, 3, 3]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks3.1.pos_embed.bias - torch.Size([320]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks3.1.norm1.weight - torch.Size([320]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks3.1.norm1.bias - torch.Size([320]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks3.1.attn.qkv.weight - torch.Size([960, 320]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks3.1.attn.qkv.bias - torch.Size([960]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks3.1.attn.proj.weight - torch.Size([320, 320]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks3.1.attn.proj.bias - torch.Size([320]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks3.1.norm2.weight - torch.Size([320]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks3.1.norm2.bias - torch.Size([320]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks3.1.mlp.fc1.weight - torch.Size([1280, 320]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks3.1.mlp.fc1.bias - torch.Size([1280]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks3.1.mlp.fc2.weight - torch.Size([320, 1280]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks3.1.mlp.fc2.bias - torch.Size([320]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks3.2.pos_embed.weight - torch.Size([320, 1, 3, 3]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks3.2.pos_embed.bias - torch.Size([320]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks3.2.norm1.weight - torch.Size([320]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks3.2.norm1.bias - torch.Size([320]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks3.2.attn.qkv.weight - torch.Size([960, 320]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks3.2.attn.qkv.bias - torch.Size([960]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks3.2.attn.proj.weight - torch.Size([320, 320]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks3.2.attn.proj.bias - torch.Size([320]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks3.2.norm2.weight - torch.Size([320]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks3.2.norm2.bias - torch.Size([320]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks3.2.mlp.fc1.weight - torch.Size([1280, 320]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks3.2.mlp.fc1.bias - torch.Size([1280]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks3.2.mlp.fc2.weight - torch.Size([320, 1280]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks3.2.mlp.fc2.bias - torch.Size([320]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks3.3.pos_embed.weight - torch.Size([320, 1, 3, 3]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks3.3.pos_embed.bias - torch.Size([320]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks3.3.norm1.weight - torch.Size([320]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks3.3.norm1.bias - torch.Size([320]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks3.3.attn.qkv.weight - torch.Size([960, 320]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks3.3.attn.qkv.bias - torch.Size([960]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks3.3.attn.proj.weight - torch.Size([320, 320]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks3.3.attn.proj.bias - torch.Size([320]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks3.3.norm2.weight - torch.Size([320]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks3.3.norm2.bias - torch.Size([320]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks3.3.mlp.fc1.weight - torch.Size([1280, 320]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks3.3.mlp.fc1.bias - torch.Size([1280]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks3.3.mlp.fc2.weight - torch.Size([320, 1280]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks3.3.mlp.fc2.bias - torch.Size([320]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks3.4.pos_embed.weight - torch.Size([320, 1, 3, 3]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks3.4.pos_embed.bias - torch.Size([320]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks3.4.norm1.weight - torch.Size([320]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks3.4.norm1.bias - torch.Size([320]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks3.4.attn.qkv.weight - torch.Size([960, 320]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks3.4.attn.qkv.bias - torch.Size([960]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks3.4.attn.proj.weight - torch.Size([320, 320]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks3.4.attn.proj.bias - torch.Size([320]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks3.4.norm2.weight - torch.Size([320]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks3.4.norm2.bias - torch.Size([320]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks3.4.mlp.fc1.weight - torch.Size([1280, 320]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks3.4.mlp.fc1.bias - torch.Size([1280]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks3.4.mlp.fc2.weight - torch.Size([320, 1280]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks3.4.mlp.fc2.bias - torch.Size([320]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks3.5.pos_embed.weight - torch.Size([320, 1, 3, 3]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks3.5.pos_embed.bias - torch.Size([320]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks3.5.norm1.weight - torch.Size([320]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks3.5.norm1.bias - torch.Size([320]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks3.5.attn.qkv.weight - torch.Size([960, 320]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks3.5.attn.qkv.bias - torch.Size([960]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks3.5.attn.proj.weight - torch.Size([320, 320]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks3.5.attn.proj.bias - torch.Size([320]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks3.5.norm2.weight - torch.Size([320]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks3.5.norm2.bias - torch.Size([320]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks3.5.mlp.fc1.weight - torch.Size([1280, 320]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks3.5.mlp.fc1.bias - torch.Size([1280]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks3.5.mlp.fc2.weight - torch.Size([320, 1280]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks3.5.mlp.fc2.bias - torch.Size([320]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks3.6.pos_embed.weight - torch.Size([320, 1, 3, 3]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks3.6.pos_embed.bias - torch.Size([320]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks3.6.norm1.weight - torch.Size([320]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks3.6.norm1.bias - torch.Size([320]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks3.6.attn.qkv.weight - torch.Size([960, 320]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks3.6.attn.qkv.bias - torch.Size([960]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks3.6.attn.proj.weight - torch.Size([320, 320]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks3.6.attn.proj.bias - torch.Size([320]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks3.6.norm2.weight - torch.Size([320]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks3.6.norm2.bias - torch.Size([320]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks3.6.mlp.fc1.weight - torch.Size([1280, 320]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks3.6.mlp.fc1.bias - torch.Size([1280]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks3.6.mlp.fc2.weight - torch.Size([320, 1280]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks3.6.mlp.fc2.bias - torch.Size([320]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks3.7.pos_embed.weight - torch.Size([320, 1, 3, 3]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks3.7.pos_embed.bias - torch.Size([320]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks3.7.norm1.weight - torch.Size([320]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks3.7.norm1.bias - torch.Size([320]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks3.7.attn.qkv.weight - torch.Size([960, 320]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks3.7.attn.qkv.bias - torch.Size([960]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks3.7.attn.proj.weight - torch.Size([320, 320]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks3.7.attn.proj.bias - torch.Size([320]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks3.7.norm2.weight - torch.Size([320]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks3.7.norm2.bias - torch.Size([320]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks3.7.mlp.fc1.weight - torch.Size([1280, 320]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks3.7.mlp.fc1.bias - torch.Size([1280]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks3.7.mlp.fc2.weight - torch.Size([320, 1280]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks3.7.mlp.fc2.bias - torch.Size([320]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.norm3.weight - torch.Size([320]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.norm3.bias - torch.Size([320]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks4.0.pos_embed.weight - torch.Size([512, 1, 3, 3]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks4.0.pos_embed.bias - torch.Size([512]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks4.0.norm1.weight - torch.Size([512]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks4.0.norm1.bias - torch.Size([512]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks4.0.attn.qkv.weight - torch.Size([1536, 512]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks4.0.attn.qkv.bias - torch.Size([1536]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks4.0.attn.proj.weight - torch.Size([512, 512]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks4.0.attn.proj.bias - torch.Size([512]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks4.0.norm2.weight - torch.Size([512]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks4.0.norm2.bias - torch.Size([512]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks4.0.mlp.fc1.weight - torch.Size([2048, 512]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks4.0.mlp.fc1.bias - torch.Size([2048]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks4.0.mlp.fc2.weight - torch.Size([512, 2048]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks4.0.mlp.fc2.bias - torch.Size([512]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks4.1.pos_embed.weight - torch.Size([512, 1, 3, 3]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks4.1.pos_embed.bias - torch.Size([512]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks4.1.norm1.weight - torch.Size([512]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks4.1.norm1.bias - torch.Size([512]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks4.1.attn.qkv.weight - torch.Size([1536, 512]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks4.1.attn.qkv.bias - torch.Size([1536]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks4.1.attn.proj.weight - torch.Size([512, 512]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks4.1.attn.proj.bias - torch.Size([512]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks4.1.norm2.weight - torch.Size([512]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks4.1.norm2.bias - torch.Size([512]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks4.1.mlp.fc1.weight - torch.Size([2048, 512]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks4.1.mlp.fc1.bias - torch.Size([2048]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks4.1.mlp.fc2.weight - torch.Size([512, 2048]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks4.1.mlp.fc2.bias - torch.Size([512]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks4.2.pos_embed.weight - torch.Size([512, 1, 3, 3]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks4.2.pos_embed.bias - torch.Size([512]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks4.2.norm1.weight - torch.Size([512]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks4.2.norm1.bias - torch.Size([512]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks4.2.attn.qkv.weight - torch.Size([1536, 512]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks4.2.attn.qkv.bias - torch.Size([1536]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks4.2.attn.proj.weight - torch.Size([512, 512]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks4.2.attn.proj.bias - torch.Size([512]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks4.2.norm2.weight - torch.Size([512]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks4.2.norm2.bias - torch.Size([512]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks4.2.mlp.fc1.weight - torch.Size([2048, 512]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks4.2.mlp.fc1.bias - torch.Size([2048]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks4.2.mlp.fc2.weight - torch.Size([512, 2048]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.blocks4.2.mlp.fc2.bias - torch.Size([512]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.norm4.weight - torch.Size([512]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
backbone.norm4.bias - torch.Size([512]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
head.deconv_layers.0.weight - torch.Size([512, 256, 4, 4]):
NormalInit: mean=0, std=0.001, bias=0
head.deconv_layers.1.weight - torch.Size([256]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
head.deconv_layers.1.bias - torch.Size([256]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
head.deconv_layers.3.weight - torch.Size([256, 256, 4, 4]):
NormalInit: mean=0, std=0.001, bias=0
head.deconv_layers.4.weight - torch.Size([256]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
head.deconv_layers.4.bias - torch.Size([256]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
head.deconv_layers.6.weight - torch.Size([256, 256, 4, 4]):
NormalInit: mean=0, std=0.001, bias=0
head.deconv_layers.7.weight - torch.Size([256]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
head.deconv_layers.7.bias - torch.Size([256]):
The value is the same before and after calling `init_weights` of TopdownPoseEstimator
head.final_layer.weight - torch.Size([17, 256, 1, 1]):
NormalInit: mean=0, std=0.001, bias=0
head.final_layer.bias - torch.Size([17]):
NormalInit: mean=0, std=0.001, bias=0
2023/07/22 14:34:10 - mmengine - WARNING - "FileClient" will be deprecated in future. Please use io functions in https://mmengine.readthedocs.io/en/latest/api/fileio.html#file-io
2023/07/22 14:34:10 - mmengine - WARNING - "HardDiskBackend" is the alias of "LocalBackend" and the former will be deprecated in future.
2023/07/22 14:34:10 - mmengine - INFO - Checkpoints will be saved to /root/mmpose/work_dirs/td-hm_uniformer-s-8xb128-210e_coco-256x192.
2023/07/22 14:34:22 - mmengine - INFO - Epoch(train) [1][ 50/4682] lr: 6.193637e-06 eta: 2 days, 17:10:57 time: 0.238675 data_time: 0.088113 memory: 2769 loss: 0.002342 loss_kpt: 0.002342 acc_pose: 0.025147
2023/07/22 14:34:33 - mmengine - INFO - Epoch(train) [1][ 100/4682] lr: 1.244990e-05 eta: 2 days, 13:50:20 time: 0.214210 data_time: 0.070430 memory: 2769 loss: 0.002225 loss_kpt: 0.002225 acc_pose: 0.063447
2023/07/22 14:34:44 - mmengine - INFO - Epoch(train) [1][ 150/4682] lr: 1.870616e-05 eta: 2 days, 13:04:57 time: 0.218167 data_time: 0.071140 memory: 2769 loss: 0.002192 loss_kpt: 0.002192 acc_pose: 0.088471
2023/07/22 14:34:56 - mmengine - INFO - Epoch(train) [1][ 200/4682] lr: 2.496242e-05 eta: 2 days, 13:38:20 time: 0.231884 data_time: 0.085791 memory: 2769 loss: 0.002208 loss_kpt: 0.002208 acc_pose: 0.068286
2023/07/22 14:35:06 - mmengine - INFO - Epoch(train) [1][ 250/4682] lr: 3.121869e-05 eta: 2 days, 13:07:07 time: 0.216263 data_time: 0.070398 memory: 2769 loss: 0.002174 loss_kpt: 0.002174 acc_pose: 0.134264
2023/07/22 14:35:17 - mmengine - INFO - Epoch(train) [1][ 300/4682] lr: 3.747495e-05 eta: 2 days, 12:45:42 time: 0.216062 data_time: 0.071069 memory: 2769 loss: 0.002154 loss_kpt: 0.002154 acc_pose: 0.088193
2023/07/22 14:35:28 - mmengine - INFO - Epoch(train) [1][ 350/4682] lr: 4.373121e-05 eta: 2 days, 12:29:12 time: 0.215576 data_time: 0.070412 memory: 2769 loss: 0.002122 loss_kpt: 0.002122 acc_pose: 0.120076
2023/07/22 14:35:39 - mmengine - INFO - Epoch(train) [1][ 400/4682] lr: 4.998747e-05 eta: 2 days, 12:23:18 time: 0.218757 data_time: 0.069984 memory: 2769 loss: 0.002127 loss_kpt: 0.002127 acc_pose: 0.137982
2023/07/22 14:35:50 - mmengine - INFO - Epoch(train) [1][ 450/4682] lr: 5.624374e-05 eta: 2 days, 12:10:00 time: 0.213989 data_time: 0.068708 memory: 2769 loss: 0.002121 loss_kpt: 0.002121 acc_pose: 0.125615
2023/07/22 14:36:01 - mmengine - INFO - Epoch(train) [1][ 500/4682] lr: 6.250000e-05 eta: 2 days, 12:24:21 time: 0.229271 data_time: 0.084079 memory: 2769 loss: 0.002046 loss_kpt: 0.002046 acc_pose: 0.100560
2023/07/22 14:36:12 - mmengine - INFO - Epoch(train) [1][ 550/4682] lr: 6.250000e-05 eta: 2 days, 12:11:56 time: 0.213064 data_time: 0.067762 memory: 2769 loss: 0.002069 loss_kpt: 0.002069 acc_pose: 0.101174
2023/07/22 14:36:23 - mmengine - INFO - Epoch(train) [1][ 600/4682] lr: 6.250000e-05 eta: 2 days, 12:05:39 time: 0.216078 data_time: 0.068032 memory: 2769 loss: 0.002138 loss_kpt: 0.002138 acc_pose: 0.123952
2023/07/22 14:36:34 - mmengine - INFO - Epoch(train) [1][ 650/4682] lr: 6.250000e-05 eta: 2 days, 12:11:38 time: 0.225055 data_time: 0.075938 memory: 2769 loss: 0.002037 loss_kpt: 0.002037 acc_pose: 0.181745
2023/07/22 14:36:45 - mmengine - INFO - Epoch(train) [1][ 700/4682] lr: 6.250000e-05 eta: 2 days, 12:07:41 time: 0.217328 data_time: 0.070013 memory: 2769 loss: 0.002077 loss_kpt: 0.002077 acc_pose: 0.156886
2023/07/22 14:36:55 - mmengine - INFO - Epoch(train) [1][ 750/4682] lr: 6.250000e-05 eta: 2 days, 12:02:47 time: 0.215984 data_time: 0.070167 memory: 2769 loss: 0.002072 loss_kpt: 0.002072 acc_pose: 0.183034
2023/07/22 14:37:06 - mmengine - INFO - Epoch(train) [1][ 800/4682] lr: 6.250000e-05 eta: 2 days, 12:01:03 time: 0.218508 data_time: 0.070894 memory: 2769 loss: 0.002069 loss_kpt: 0.002069 acc_pose: 0.116141
2023/07/22 14:37:19 - mmengine - INFO - Epoch(train) [1][ 850/4682] lr: 6.250000e-05 eta: 2 days, 12:28:41 time: 0.248821 data_time: 0.101981 memory: 2769 loss: 0.002058 loss_kpt: 0.002058 acc_pose: 0.152378
2023/07/22 14:37:30 - mmengine - INFO - Epoch(train) [1][ 900/4682] lr: 6.250000e-05 eta: 2 days, 12:24:00 time: 0.216682 data_time: 0.069223 memory: 2769 loss: 0.002018 loss_kpt: 0.002018 acc_pose: 0.162742
2023/07/22 14:37:41 - mmengine - INFO - Epoch(train) [1][ 950/4682] lr: 6.250000e-05 eta: 2 days, 12:24:08 time: 0.221729 data_time: 0.070929 memory: 2769 loss: 0.002030 loss_kpt: 0.002030 acc_pose: 0.157651
2023/07/22 14:37:52 - mmengine - INFO - Exp name: td-hm_uniformer-s-8xb128-210e_coco-256x192_20230722_143251
2023/07/22 14:37:52 - mmengine - INFO - Epoch(train) [1][1000/4682] lr: 6.250000e-05 eta: 2 days, 12:22:31 time: 0.219609 data_time: 0.071100 memory: 2769 loss: 0.002040 loss_kpt: 0.002040 acc_pose: 0.212475
2023/07/22 14:38:03 - mmengine - INFO - Epoch(train) [1][1050/4682] lr: 6.250000e-05 eta: 2 days, 12:19:44 time: 0.217952 data_time: 0.070976 memory: 2769 loss: 0.002039 loss_kpt: 0.002039 acc_pose: 0.177589
2023/07/22 14:38:14 - mmengine - INFO - Epoch(train) [1][1100/4682] lr: 6.250000e-05 eta: 2 days, 12:17:50 time: 0.218819 data_time: 0.071152 memory: 2769 loss: 0.001997 loss_kpt: 0.001997 acc_pose: 0.181745
2023/07/22 14:38:24 - mmengine - INFO - Epoch(train) [1][1150/4682] lr: 6.250000e-05 eta: 2 days, 12:12:54 time: 0.214366 data_time: 0.069868 memory: 2769 loss: 0.002044 loss_kpt: 0.002044 acc_pose: 0.247371
2023/07/22 14:38:35 - mmengine - INFO - Epoch(train) [1][1200/4682] lr: 6.250000e-05 eta: 2 days, 12:09:43 time: 0.216320 data_time: 0.070588 memory: 2769 loss: 0.001998 loss_kpt: 0.001998 acc_pose: 0.182767
2023/07/22 14:38:46 - mmengine - INFO - Epoch(train) [1][1250/4682] lr: 6.250000e-05 eta: 2 days, 12:10:15 time: 0.221654 data_time: 0.072237 memory: 2769 loss: 0.002001 loss_kpt: 0.002001 acc_pose: 0.192956
2023/07/22 14:38:57 - mmengine - INFO - Epoch(train) [1][1300/4682] lr: 6.250000e-05 eta: 2 days, 12:07:12 time: 0.216048 data_time: 0.067855 memory: 2769 loss: 0.001997 loss_kpt: 0.001997 acc_pose: 0.205860
2023/07/22 14:39:08 - mmengine - INFO - Epoch(train) [1][1350/4682] lr: 6.250000e-05 eta: 2 days, 12:05:19 time: 0.217611 data_time: 0.069244 memory: 2769 loss: 0.002010 loss_kpt: 0.002010 acc_pose: 0.177655
2023/07/22 14:39:19 - mmengine - INFO - Epoch(train) [1][1400/4682] lr: 6.250000e-05 eta: 2 days, 12:03:52 time: 0.218147 data_time: 0.071651 memory: 2769 loss: 0.002012 loss_kpt: 0.002012 acc_pose: 0.169542
2023/07/22 14:39:30 - mmengine - INFO - Epoch(train) [1][1450/4682] lr: 6.250000e-05 eta: 2 days, 12:03:20 time: 0.219611 data_time: 0.072449 memory: 2769 loss: 0.001992 loss_kpt: 0.001992 acc_pose: 0.252034
2023/07/22 14:39:41 - mmengine - INFO - Epoch(train) [1][1500/4682] lr: 6.250000e-05 eta: 2 days, 12:09:23 time: 0.231631 data_time: 0.084115 memory: 2769 loss: 0.002023 loss_kpt: 0.002023 acc_pose: 0.185021
2023/07/22 14:39:52 - mmengine - INFO - Epoch(train) [1][1550/4682] lr: 6.250000e-05 eta: 2 days, 12:07:28 time: 0.217318 data_time: 0.070157 memory: 2769 loss: 0.001949 loss_kpt: 0.001949 acc_pose: 0.195677
2023/07/22 14:40:03 - mmengine - INFO - Epoch(train) [1][1600/4682] lr: 6.250000e-05 eta: 2 days, 12:05:48 time: 0.217586 data_time: 0.070765 memory: 2769 loss: 0.002003 loss_kpt: 0.002003 acc_pose: 0.202623
2023/07/22 14:40:14 - mmengine - INFO - Epoch(train) [1][1650/4682] lr: 6.250000e-05 eta: 2 days, 12:04:59 time: 0.219127 data_time: 0.071461 memory: 2769 loss: 0.001976 loss_kpt: 0.001976 acc_pose: 0.170747
2023/07/22 14:40:25 - mmengine - INFO - Epoch(train) [1][1700/4682] lr: 6.250000e-05 eta: 2 days, 12:05:16 time: 0.221335 data_time: 0.070725 memory: 2769 loss: 0.001958 loss_kpt: 0.001958 acc_pose: 0.270792
2023/07/22 14:40:36 - mmengine - INFO - Epoch(train) [1][1750/4682] lr: 6.250000e-05 eta: 2 days, 12:02:18 time: 0.214426 data_time: 0.068187 memory: 2769 loss: 0.001904 loss_kpt: 0.001904 acc_pose: 0.204290
2023/07/22 14:40:47 - mmengine - INFO - Epoch(train) [1][1800/4682] lr: 6.250000e-05 eta: 2 days, 12:01:06 time: 0.217989 data_time: 0.070411 memory: 2769 loss: 0.001948 loss_kpt: 0.001948 acc_pose: 0.202963
2023/07/22 14:40:57 - mmengine - INFO - Epoch(train) [1][1850/4682] lr: 6.250000e-05 eta: 2 days, 11:58:54 time: 0.215582 data_time: 0.068443 memory: 2769 loss: 0.001918 loss_kpt: 0.001918 acc_pose: 0.250597
2023/07/22 14:41:08 - mmengine - INFO - Epoch(train) [1][1900/4682] lr: 6.250000e-05 eta: 2 days, 11:57:27 time: 0.217119 data_time: 0.070256 memory: 2769 loss: 0.001875 loss_kpt: 0.001875 acc_pose: 0.208480
2023/07/22 14:41:19 - mmengine - INFO - Epoch(train) [1][1950/4682] lr: 6.250000e-05 eta: 2 days, 11:57:06 time: 0.219533 data_time: 0.069367 memory: 2769 loss: 0.001934 loss_kpt: 0.001934 acc_pose: 0.274872
2023/07/22 14:41:30 - mmengine - INFO - Exp name: td-hm_uniformer-s-8xb128-210e_coco-256x192_20230722_143251
2023/07/22 14:41:30 - mmengine - INFO - Epoch(train) [1][2000/4682] lr: 6.250000e-05 eta: 2 days, 11:55:49 time: 0.217253 data_time: 0.068804 memory: 2769 loss: 0.001888 loss_kpt: 0.001888 acc_pose: 0.344551
2023/07/22 14:41:41 - mmengine - INFO - Epoch(train) [1][2050/4682] lr: 6.250000e-05 eta: 2 days, 11:53:12 time: 0.213803 data_time: 0.066914 memory: 2769 loss: 0.001902 loss_kpt: 0.001902 acc_pose: 0.159386
2023/07/22 14:41:52 - mmengine - INFO - Epoch(train) [1][2100/4682] lr: 6.250000e-05 eta: 2 days, 11:51:51 time: 0.216723 data_time: 0.069914 memory: 2769 loss: 0.001916 loss_kpt: 0.001916 acc_pose: 0.237694
2023/07/22 14:42:03 - mmengine - INFO - Epoch(train) [1][2150/4682] lr: 6.250000e-05 eta: 2 days, 11:50:26 time: 0.216423 data_time: 0.069900 memory: 2769 loss: 0.001918 loss_kpt: 0.001918 acc_pose: 0.260449
2023/07/22 14:42:13 - mmengine - INFO - Epoch(train) [1][2200/4682] lr: 6.250000e-05 eta: 2 days, 11:49:06 time: 0.216480 data_time: 0.069685 memory: 2769 loss: 0.001904 loss_kpt: 0.001904 acc_pose: 0.303737
2023/07/22 14:42:24 - mmengine - INFO - Epoch(train) [1][2250/4682] lr: 6.250000e-05 eta: 2 days, 11:48:44 time: 0.219002 data_time: 0.070634 memory: 2769 loss: 0.001892 loss_kpt: 0.001892 acc_pose: 0.248940
2023/07/22 14:42:36 - mmengine - INFO - Epoch(train) [1][2300/4682] lr: 6.250000e-05 eta: 2 days, 11:54:11 time: 0.235337 data_time: 0.086533 memory: 2769 loss: 0.001909 loss_kpt: 0.001909 acc_pose: 0.245801
2023/07/22 14:42:47 - mmengine - INFO - Epoch(train) [1][2350/4682] lr: 6.250000e-05 eta: 2 days, 11:54:04 time: 0.220070 data_time: 0.072084 memory: 2769 loss: 0.001897 loss_kpt: 0.001897 acc_pose: 0.228306
2023/07/22 14:42:58 - mmengine - INFO - Epoch(train) [1][2400/4682] lr: 6.250000e-05 eta: 2 days, 11:52:57 time: 0.217078 data_time: 0.068393 memory: 2769 loss: 0.001846 loss_kpt: 0.001846 acc_pose: 0.324069
2023/07/22 14:43:09 - mmengine - INFO - Epoch(train) [1][2450/4682] lr: 6.250000e-05 eta: 2 days, 11:52:16 time: 0.218289 data_time: 0.070318 memory: 2769 loss: 0.001890 loss_kpt: 0.001890 acc_pose: 0.288004
2023/07/22 14:43:20 - mmengine - INFO - Epoch(train) [1][2500/4682] lr: 6.250000e-05 eta: 2 days, 11:51:27 time: 0.217856 data_time: 0.070853 memory: 2769 loss: 0.001838 loss_kpt: 0.001838 acc_pose: 0.192583
2023/07/22 14:43:31 - mmengine - INFO - Epoch(train) [1][2550/4682] lr: 6.250000e-05 eta: 2 days, 11:50:23 time: 0.216951 data_time: 0.069948 memory: 2769 loss: 0.001860 loss_kpt: 0.001860 acc_pose: 0.141178
2023/07/22 14:43:42 - mmengine - INFO - Epoch(train) [1][2600/4682] lr: 6.250000e-05 eta: 2 days, 11:53:43 time: 0.230845 data_time: 0.082083 memory: 2769 loss: 0.001872 loss_kpt: 0.001872 acc_pose: 0.358413
2023/07/22 14:43:53 - mmengine - INFO - Epoch(train) [1][2650/4682] lr: 6.250000e-05 eta: 2 days, 11:52:38 time: 0.216960 data_time: 0.067662 memory: 2769 loss: 0.001869 loss_kpt: 0.001869 acc_pose: 0.262805
2023/07/22 14:44:04 - mmengine - INFO - Epoch(train) [1][2700/4682] lr: 6.250000e-05 eta: 2 days, 11:52:27 time: 0.219842 data_time: 0.070447 memory: 2769 loss: 0.001856 loss_kpt: 0.001856 acc_pose: 0.302262
2023/07/22 14:44:15 - mmengine - INFO - Epoch(train) [1][2750/4682] lr: 6.250000e-05 eta: 2 days, 11:50:47 time: 0.214871 data_time: 0.066616 memory: 2769 loss: 0.001869 loss_kpt: 0.001869 acc_pose: 0.253689
2023/07/22 14:44:26 - mmengine - INFO - Epoch(train) [1][2800/4682] lr: 6.250000e-05 eta: 2 days, 11:49:37 time: 0.216359 data_time: 0.068392 memory: 2769 loss: 0.001831 loss_kpt: 0.001831 acc_pose: 0.297514
2023/07/22 14:44:36 - mmengine - INFO - Epoch(train) [1][2850/4682] lr: 6.250000e-05 eta: 2 days, 11:48:25 time: 0.216140 data_time: 0.067781 memory: 2769 loss: 0.001805 loss_kpt: 0.001805 acc_pose: 0.306196
2023/07/22 14:44:48 - mmengine - INFO - Epoch(train) [1][2900/4682] lr: 6.250000e-05 eta: 2 days, 11:53:33 time: 0.238467 data_time: 0.088258 memory: 2769 loss: 0.001801 loss_kpt: 0.001801 acc_pose: 0.312398
2023/07/22 14:44:59 - mmengine - INFO - Epoch(train) [1][2950/4682] lr: 6.250000e-05 eta: 2 days, 11:53:38 time: 0.220876 data_time: 0.071713 memory: 2769 loss: 0.001849 loss_kpt: 0.001849 acc_pose: 0.312699
2023/07/22 14:45:10 - mmengine - INFO - Exp name: td-hm_uniformer-s-8xb128-210e_coco-256x192_20230722_143251
2023/07/22 14:45:10 - mmengine - INFO - Epoch(train) [1][3000/4682] lr: 6.250000e-05 eta: 2 days, 11:53:36 time: 0.220552 data_time: 0.070842 memory: 2769 loss: 0.001837 loss_kpt: 0.001837 acc_pose: 0.216881
2023/07/22 14:45:21 - mmengine - INFO - Epoch(train) [1][3050/4682] lr: 6.250000e-05 eta: 2 days, 11:53:20 time: 0.219633 data_time: 0.069806 memory: 2769 loss: 0.001814 loss_kpt: 0.001814 acc_pose: 0.309035
2023/07/22 14:45:32 - mmengine - INFO - Epoch(train) [1][3100/4682] lr: 6.250000e-05 eta: 2 days, 11:52:54 time: 0.219044 data_time: 0.071651 memory: 2769 loss: 0.001802 loss_kpt: 0.001802 acc_pose: 0.220713
2023/07/22 14:45:43 - mmengine - INFO - Epoch(train) [1][3150/4682] lr: 6.250000e-05 eta: 2 days, 11:51:56 time: 0.216899 data_time: 0.068939 memory: 2769 loss: 0.001801 loss_kpt: 0.001801 acc_pose: 0.334904
2023/07/22 14:45:54 - mmengine - INFO - Epoch(train) [1][3200/4682] lr: 6.250000e-05 eta: 2 days, 11:51:20 time: 0.218274 data_time: 0.071068 memory: 2769 loss: 0.001809 loss_kpt: 0.001809 acc_pose: 0.260054
2023/07/22 14:46:05 - mmengine - INFO - Epoch(train) [1][3250/4682] lr: 6.250000e-05 eta: 2 days, 11:50:28 time: 0.217118 data_time: 0.068969 memory: 2769 loss: 0.001812 loss_kpt: 0.001812 acc_pose: 0.250341
2023/07/22 14:46:16 - mmengine - INFO - Epoch(train) [1][3300/4682] lr: 6.250000e-05 eta: 2 days, 11:49:52 time: 0.218194 data_time: 0.070332 memory: 2769 loss: 0.001810 loss_kpt: 0.001810 acc_pose: 0.296835
2023/07/22 14:46:26 - mmengine - INFO - Epoch(train) [1][3350/4682] lr: 6.250000e-05 eta: 2 days, 11:48:04 time: 0.213188 data_time: 0.064518 memory: 2769 loss: 0.001807 loss_kpt: 0.001807 acc_pose: 0.303540
2023/07/22 14:46:38 - mmengine - INFO - Epoch(train) [1][3400/4682] lr: 6.250000e-05 eta: 2 days, 11:51:11 time: 0.233414 data_time: 0.085296 memory: 2769 loss: 0.001820 loss_kpt: 0.001820 acc_pose: 0.321955
2023/07/22 14:46:49 - mmengine - INFO - Epoch(train) [1][3450/4682] lr: 6.250000e-05 eta: 2 days, 11:50:17 time: 0.216865 data_time: 0.067705 memory: 2769 loss: 0.001838 loss_kpt: 0.001838 acc_pose: 0.429913
2023/07/22 14:47:00 - mmengine - INFO - Epoch(train) [1][3500/4682] lr: 6.250000e-05 eta: 2 days, 11:50:18 time: 0.220740 data_time: 0.072034 memory: 2769 loss: 0.001760 loss_kpt: 0.001760 acc_pose: 0.327256
2023/07/22 14:47:11 - mmengine - INFO - Epoch(train) [1][3550/4682] lr: 6.250000e-05 eta: 2 days, 11:51:22 time: 0.225282 data_time: 0.073994 memory: 2769 loss: 0.001783 loss_kpt: 0.001783 acc_pose: 0.312063
2023/07/22 14:47:22 - mmengine - INFO - Epoch(train) [1][3600/4682] lr: 6.250000e-05 eta: 2 days, 11:50:50 time: 0.218429 data_time: 0.070870 memory: 2769 loss: 0.001785 loss_kpt: 0.001785 acc_pose: 0.276079
2023/07/22 14:47:33 - mmengine - INFO - Epoch(train) [1][3650/4682] lr: 6.250000e-05 eta: 2 days, 11:50:37 time: 0.219818 data_time: 0.070142 memory: 2769 loss: 0.001771 loss_kpt: 0.001771 acc_pose: 0.268007
2023/07/22 14:47:45 - mmengine - INFO - Epoch(train) [1][3700/4682] lr: 6.250000e-05 eta: 2 days, 11:53:25 time: 0.233418 data_time: 0.084324 memory: 2769 loss: 0.001789 loss_kpt: 0.001789 acc_pose: 0.282685
2023/07/22 14:47:56 - mmengine - INFO - Epoch(train) [1][3750/4682] lr: 6.250000e-05 eta: 2 days, 11:52:16 time: 0.215661 data_time: 0.068282 memory: 2769 loss: 0.001733 loss_kpt: 0.001733 acc_pose: 0.289396
2023/07/22 14:48:07 - mmengine - INFO - Epoch(train) [1][3800/4682] lr: 6.250000e-05 eta: 2 days, 11:52:05 time: 0.220118 data_time: 0.071339 memory: 2769 loss: 0.001777 loss_kpt: 0.001777 acc_pose: 0.330327
2023/07/22 14:48:18 - mmengine - INFO - Epoch(train) [1][3850/4682] lr: 6.250000e-05 eta: 2 days, 11:51:53 time: 0.219957 data_time: 0.071816 memory: 2769 loss: 0.001771 loss_kpt: 0.001771 acc_pose: 0.306766
2023/07/22 14:48:29 - mmengine - INFO - Epoch(train) [1][3900/4682] lr: 6.250000e-05 eta: 2 days, 11:51:44 time: 0.220199 data_time: 0.070299 memory: 2769 loss: 0.001763 loss_kpt: 0.001763 acc_pose: 0.408379
2023/07/22 14:48:40 - mmengine - INFO - Epoch(train) [1][3950/4682] lr: 6.250000e-05 eta: 2 days, 11:51:41 time: 0.220680 data_time: 0.071206 memory: 2769 loss: 0.001723 loss_kpt: 0.001723 acc_pose: 0.331735
2023/07/22 14:48:51 - mmengine - INFO - Exp name: td-hm_uniformer-s-8xb128-210e_coco-256x192_20230722_143251
2023/07/22 14:48:51 - mmengine - INFO - Epoch(train) [1][4000/4682] lr: 6.250000e-05 eta: 2 days, 11:51:02 time: 0.217765 data_time: 0.067463 memory: 2769 loss: 0.001758 loss_kpt: 0.001758 acc_pose: 0.276604
2023/07/22 14:49:01 - mmengine - INFO - Epoch(train) [1][4050/4682] lr: 6.250000e-05 eta: 2 days, 11:50:21 time: 0.217575 data_time: 0.069876 memory: 2769 loss: 0.001735 loss_kpt: 0.001735 acc_pose: 0.264040
2023/07/22 14:49:12 - mmengine - INFO - Epoch(train) [1][4100/4682] lr: 6.250000e-05 eta: 2 days, 11:50:06 time: 0.219668 data_time: 0.071190 memory: 2769 loss: 0.001745 loss_kpt: 0.001745 acc_pose: 0.303010
2023/07/22 14:49:23 - mmengine - INFO - Epoch(train) [1][4150/4682] lr: 6.250000e-05 eta: 2 days, 11:49:07 time: 0.215914 data_time: 0.067799 memory: 2769 loss: 0.001749 loss_kpt: 0.001749 acc_pose: 0.337708
2023/07/22 14:49:34 - mmengine - INFO - Epoch(train) [1][4200/4682] lr: 6.250000e-05 eta: 2 days, 11:48:51 time: 0.219527 data_time: 0.072417 memory: 2769 loss: 0.001757 loss_kpt: 0.001757 acc_pose: 0.374240
2023/07/22 14:49:46 - mmengine - INFO - Epoch(train) [1][4250/4682] lr: 6.250000e-05 eta: 2 days, 11:50:34 time: 0.229830 data_time: 0.082045 memory: 2769 loss: 0.001735 loss_kpt: 0.001735 acc_pose: 0.337551
2023/07/22 14:49:57 - mmengine - INFO - Epoch(train) [1][4300/4682] lr: 6.250000e-05 eta: 2 days, 11:49:57 time: 0.217770 data_time: 0.069308 memory: 2769 loss: 0.001732 loss_kpt: 0.001732 acc_pose: 0.346927
2023/07/22 14:50:07 - mmengine - INFO - Epoch(train) [1][4350/4682] lr: 6.250000e-05 eta: 2 days, 11:49:09 time: 0.216777 data_time: 0.069380 memory: 2769 loss: 0.001723 loss_kpt: 0.001723 acc_pose: 0.381805
2023/07/22 14:50:18 - mmengine - INFO - Epoch(train) [1][4400/4682] lr: 6.250000e-05 eta: 2 days, 11:48:13 time: 0.215922 data_time: 0.067738 memory: 2769 loss: 0.001733 loss_kpt: 0.001733 acc_pose: 0.369610
2023/07/22 14:50:29 - mmengine - INFO - Epoch(train) [1][4450/4682] lr: 6.250000e-05 eta: 2 days, 11:48:20 time: 0.221661 data_time: 0.070542 memory: 2769 loss: 0.001743 loss_kpt: 0.001743 acc_pose: 0.432129
2023/07/22 14:50:40 - mmengine - INFO - Epoch(train) [1][4500/4682] lr: 6.250000e-05 eta: 2 days, 11:47:48 time: 0.218011 data_time: 0.069297 memory: 2769 loss: 0.001714 loss_kpt: 0.001714 acc_pose: 0.343639
2023/07/22 14:50:51 - mmengine - INFO - Epoch(train) [1][4550/4682] lr: 6.250000e-05 eta: 2 days, 11:47:11 time: 0.217507 data_time: 0.069888 memory: 2769 loss: 0.001740 loss_kpt: 0.001740 acc_pose: 0.400089
2023/07/22 14:51:02 - mmengine - INFO - Epoch(train) [1][4600/4682] lr: 6.250000e-05 eta: 2 days, 11:46:46 time: 0.218590 data_time: 0.070766 memory: 2769 loss: 0.001733 loss_kpt: 0.001733 acc_pose: 0.294756
2023/07/22 14:51:13 - mmengine - INFO - Epoch(train) [1][4650/4682] lr: 6.250000e-05 eta: 2 days, 11:46:15 time: 0.218027 data_time: 0.069461 memory: 2769 loss: 0.001701 loss_kpt: 0.001701 acc_pose: 0.332855
2023/07/22 14:51:20 - mmengine - INFO - Exp name: td-hm_uniformer-s-8xb128-210e_coco-256x192_20230722_143251
2023/07/22 14:51:31 - mmengine - INFO - Epoch(train) [2][ 50/4682] lr: 6.250000e-05 eta: 2 days, 11:46:26 time: 0.225645 data_time: 0.075325 memory: 2769 loss: 0.001687 loss_kpt: 0.001687 acc_pose: 0.337012
2023/07/22 14:51:42 - mmengine - INFO - Epoch(train) [2][ 100/4682] lr: 6.250000e-05 eta: 2 days, 11:46:55 time: 0.223896 data_time: 0.072022 memory: 2769 loss: 0.001708 loss_kpt: 0.001708 acc_pose: 0.409553
2023/07/22 14:51:54 - mmengine - INFO - Epoch(train) [2][ 150/4682] lr: 6.250000e-05 eta: 2 days, 11:47:22 time: 0.223711 data_time: 0.073127 memory: 2769 loss: 0.001702 loss_kpt: 0.001702 acc_pose: 0.340780
2023/07/22 14:52:05 - mmengine - INFO - Epoch(train) [2][ 200/4682] lr: 6.250000e-05 eta: 2 days, 11:49:35 time: 0.234287 data_time: 0.085480 memory: 2769 loss: 0.001711 loss_kpt: 0.001711 acc_pose: 0.273863
2023/07/22 14:52:16 - mmengine - INFO - Epoch(train) [2][ 250/4682] lr: 6.250000e-05 eta: 2 days, 11:49:30 time: 0.220832 data_time: 0.072730 memory: 2769 loss: 0.001690 loss_kpt: 0.001690 acc_pose: 0.433614
2023/07/22 14:52:27 - mmengine - INFO - Epoch(train) [2][ 300/4682] lr: 6.250000e-05 eta: 2 days, 11:49:15 time: 0.219682 data_time: 0.070356 memory: 2769 loss: 0.001731 loss_kpt: 0.001731 acc_pose: 0.315223
2023/07/22 14:52:31 - mmengine - INFO - Exp name: td-hm_uniformer-s-8xb128-210e_coco-256x192_20230722_143251
2023/07/22 14:52:38 - mmengine - INFO - Epoch(train) [2][ 350/4682] lr: 6.250000e-05 eta: 2 days, 11:49:05 time: 0.220255 data_time: 0.069510 memory: 2769 loss: 0.001698 loss_kpt: 0.001698 acc_pose: 0.330739
2023/07/22 14:52:49 - mmengine - INFO - Epoch(train) [2][ 400/4682] lr: 6.250000e-05 eta: 2 days, 11:48:45 time: 0.219247 data_time: 0.069325 memory: 2769 loss: 0.001724 loss_kpt: 0.001724 acc_pose: 0.337666
2023/07/22 14:53:01 - mmengine - INFO - Epoch(train) [2][ 450/4682] lr: 6.250000e-05 eta: 2 days, 11:50:30 time: 0.232288 data_time: 0.083366 memory: 2769 loss: 0.001677 loss_kpt: 0.001677 acc_pose: 0.298622
2023/07/22 14:53:12 - mmengine - INFO - Epoch(train) [2][ 500/4682] lr: 6.250000e-05 eta: 2 days, 11:51:27 time: 0.227438 data_time: 0.078858 memory: 2769 loss: 0.001654 loss_kpt: 0.001654 acc_pose: 0.362969
2023/07/22 14:53:23 - mmengine - INFO - Epoch(train) [2][ 550/4682] lr: 6.250000e-05 eta: 2 days, 11:50:50 time: 0.217559 data_time: 0.068187 memory: 2769 loss: 0.001678 loss_kpt: 0.001678 acc_pose: 0.286935
2023/07/22 14:53:35 - mmengine - INFO - Epoch(train) [2][ 600/4682] lr: 6.250000e-05 eta: 2 days, 11:53:01 time: 0.235668 data_time: 0.070694 memory: 2769 loss: 0.001674 loss_kpt: 0.001674 acc_pose: 0.399984
2023/07/22 14:53:46 - mmengine - INFO - Epoch(train) [2][ 650/4682] lr: 6.250000e-05 eta: 2 days, 11:52:46 time: 0.220053 data_time: 0.071188 memory: 2769 loss: 0.001672 loss_kpt: 0.001672 acc_pose: 0.365492
2023/07/22 14:53:57 - mmengine - INFO - Epoch(train) [2][ 700/4682] lr: 6.250000e-05 eta: 2 days, 11:51:57 time: 0.216242 data_time: 0.066703 memory: 2769 loss: 0.001661 loss_kpt: 0.001661 acc_pose: 0.302438
2023/07/22 14:54:08 - mmengine - INFO - Epoch(train) [2][ 750/4682] lr: 6.250000e-05 eta: 2 days, 11:51:47 time: 0.220451 data_time: 0.071079 memory: 2769 loss: 0.001660 loss_kpt: 0.001660 acc_pose: 0.423986
2023/07/22 14:54:19 - mmengine - INFO - Epoch(train) [2][ 800/4682] lr: 6.250000e-05 eta: 2 days, 11:51:47 time: 0.221668 data_time: 0.072982 memory: 2769 loss: 0.001686 loss_kpt: 0.001686 acc_pose: 0.256086
2023/07/22 14:54:30 - mmengine - INFO - Epoch(train) [2][ 850/4682] lr: 6.250000e-05 eta: 2 days, 11:51:04 time: 0.216771 data_time: 0.067996 memory: 2769 loss: 0.001644 loss_kpt: 0.001644 acc_pose: 0.331493
2023/07/22 14:54:41 - mmengine - INFO - Epoch(train) [2][ 900/4682] lr: 6.250000e-05 eta: 2 days, 11:50:53 time: 0.220389 data_time: 0.070694 memory: 2769 loss: 0.001686 loss_kpt: 0.001686 acc_pose: 0.356108
2023/07/22 14:54:52 - mmengine - INFO - Epoch(train) [2][ 950/4682] lr: 6.250000e-05 eta: 2 days, 11:50:16 time: 0.217441 data_time: 0.068453 memory: 2769 loss: 0.001645 loss_kpt: 0.001645 acc_pose: 0.416431
2023/07/22 14:55:02 - mmengine - INFO - Epoch(train) [2][1000/4682] lr: 6.250000e-05 eta: 2 days, 11:49:32 time: 0.216543 data_time: 0.068501 memory: 2769 loss: 0.001684 loss_kpt: 0.001684 acc_pose: 0.459218
2023/07/22 14:55:13 - mmengine - INFO - Epoch(train) [2][1050/4682] lr: 6.250000e-05 eta: 2 days, 11:49:11 time: 0.219055 data_time: 0.070455 memory: 2769 loss: 0.001674 loss_kpt: 0.001674 acc_pose: 0.400068
2023/07/22 14:55:24 - mmengine - INFO - Epoch(train) [2][1100/4682] lr: 6.250000e-05 eta: 2 days, 11:49:26 time: 0.223386 data_time: 0.070582 memory: 2769 loss: 0.001666 loss_kpt: 0.001666 acc_pose: 0.369216
2023/07/22 14:55:36 - mmengine - INFO - Epoch(train) [2][1150/4682] lr: 6.250000e-05 eta: 2 days, 11:49:20 time: 0.220941 data_time: 0.069895 memory: 2769 loss: 0.001662 loss_kpt: 0.001662 acc_pose: 0.378371
2023/07/22 14:55:47 - mmengine - INFO - Epoch(train) [2][1200/4682] lr: 6.250000e-05 eta: 2 days, 11:50:56 time: 0.233237 data_time: 0.083369 memory: 2769 loss: 0.001662 loss_kpt: 0.001662 acc_pose: 0.401072
2023/07/22 14:55:58 - mmengine - INFO - Epoch(train) [2][1250/4682] lr: 6.250000e-05 eta: 2 days, 11:50:19 time: 0.217277 data_time: 0.068816 memory: 2769 loss: 0.001647 loss_kpt: 0.001647 acc_pose: 0.406680
2023/07/22 14:56:09 - mmengine - INFO - Epoch(train) [2][1300/4682] lr: 6.250000e-05 eta: 2 days, 11:49:59 time: 0.219428 data_time: 0.068816 memory: 2769 loss: 0.001606 loss_kpt: 0.001606 acc_pose: 0.403298
2023/07/22 14:56:13 - mmengine - INFO - Exp name: td-hm_uniformer-s-8xb128-210e_coco-256x192_20230722_143251
2023/07/22 14:56:20 - mmengine - INFO - Epoch(train) [2][1350/4682] lr: 6.250000e-05 eta: 2 days, 11:49:27 time: 0.217827 data_time: 0.068824 memory: 2769 loss: 0.001631 loss_kpt: 0.001631 acc_pose: 0.400999
2023/07/22 14:56:31 - mmengine - INFO - Epoch(train) [2][1400/4682] lr: 6.250000e-05 eta: 2 days, 11:49:07 time: 0.219201 data_time: 0.067744 memory: 2769 loss: 0.001673 loss_kpt: 0.001673 acc_pose: 0.393899
2023/07/22 14:56:42 - mmengine - INFO - Epoch(train) [2][1450/4682] lr: 6.250000e-05 eta: 2 days, 11:49:01 time: 0.221023 data_time: 0.070715 memory: 2769 loss: 0.001647 loss_kpt: 0.001647 acc_pose: 0.310082
2023/07/22 14:56:53 - mmengine - INFO - Epoch(train) [2][1500/4682] lr: 6.250000e-05 eta: 2 days, 11:48:49 time: 0.220228 data_time: 0.070339 memory: 2769 loss: 0.001657 loss_kpt: 0.001657 acc_pose: 0.389150
2023/07/22 14:57:04 - mmengine - INFO - Epoch(train) [2][1550/4682] lr: 6.250000e-05 eta: 2 days, 11:48:03 time: 0.215965 data_time: 0.066791 memory: 2769 loss: 0.001663 loss_kpt: 0.001663 acc_pose: 0.416658
2023/07/22 14:57:15 - mmengine - INFO - Epoch(train) [2][1600/4682] lr: 6.250000e-05 eta: 2 days, 11:49:41 time: 0.234430 data_time: 0.068986 memory: 2769 loss: 0.001657 loss_kpt: 0.001657 acc_pose: 0.388935
2023/07/22 14:57:26 - mmengine - INFO - Epoch(train) [2][1650/4682] lr: 6.250000e-05 eta: 2 days, 11:49:02 time: 0.216811 data_time: 0.067282 memory: 2769 loss: 0.001636 loss_kpt: 0.001636 acc_pose: 0.377669
2023/07/22 14:57:37 - mmengine - INFO - Epoch(train) [2][1700/4682] lr: 6.250000e-05 eta: 2 days, 11:48:46 time: 0.219776 data_time: 0.068558 memory: 2769 loss: 0.001636 loss_kpt: 0.001636 acc_pose: 0.409638
2023/07/22 14:57:48 - mmengine - INFO - Epoch(train) [2][1750/4682] lr: 6.250000e-05 eta: 2 days, 11:48:21 time: 0.218620 data_time: 0.070469 memory: 2769 loss: 0.001649 loss_kpt: 0.001649 acc_pose: 0.349039
2023/07/22 14:57:59 - mmengine - INFO - Epoch(train) [2][1800/4682] lr: 6.250000e-05 eta: 2 days, 11:48:04 time: 0.219574 data_time: 0.070088 memory: 2769 loss: 0.001590 loss_kpt: 0.001590 acc_pose: 0.519241
2023/07/22 14:58:10 - mmengine - INFO - Epoch(train) [2][1850/4682] lr: 6.250000e-05 eta: 2 days, 11:47:28 time: 0.217086 data_time: 0.067470 memory: 2769 loss: 0.001633 loss_kpt: 0.001633 acc_pose: 0.438281
2023/07/22 14:58:21 - mmengine - INFO - Epoch(train) [2][1900/4682] lr: 6.250000e-05 eta: 2 days, 11:47:04 time: 0.218644 data_time: 0.070237 memory: 2769 loss: 0.001624 loss_kpt: 0.001624 acc_pose: 0.376196
2023/07/22 14:58:32 - mmengine - INFO - Epoch(train) [2][1950/4682] lr: 6.250000e-05 eta: 2 days, 11:46:56 time: 0.220802 data_time: 0.069396 memory: 2769 loss: 0.001622 loss_kpt: 0.001622 acc_pose: 0.458305
2023/07/22 14:58:43 - mmengine - INFO - Epoch(train) [2][2000/4682] lr: 6.250000e-05 eta: 2 days, 11:46:42 time: 0.220006 data_time: 0.069541 memory: 2769 loss: 0.001628 loss_kpt: 0.001628 acc_pose: 0.244268
2023/07/22 14:58:54 - mmengine - INFO - Epoch(train) [2][2050/4682] lr: 6.250000e-05 eta: 2 days, 11:46:12 time: 0.217762 data_time: 0.068479 memory: 2769 loss: 0.001629 loss_kpt: 0.001629 acc_pose: 0.360035
2023/07/22 14:59:05 - mmengine - INFO - Epoch(train) [2][2100/4682] lr: 6.250000e-05 eta: 2 days, 11:45:33 time: 0.216387 data_time: 0.067631 memory: 2769 loss: 0.001620 loss_kpt: 0.001620 acc_pose: 0.432375
2023/07/22 14:59:16 - mmengine - INFO - Epoch(train) [2][2150/4682] lr: 6.250000e-05 eta: 2 days, 11:45:02 time: 0.217608 data_time: 0.067910 memory: 2769 loss: 0.001639 loss_kpt: 0.001639 acc_pose: 0.461053
2023/07/22 14:59:27 - mmengine - INFO - Epoch(train) [2][2200/4682] lr: 6.250000e-05 eta: 2 days, 11:46:20 time: 0.232736 data_time: 0.083698 memory: 2769 loss: 0.001621 loss_kpt: 0.001621 acc_pose: 0.363318
2023/07/22 14:59:38 - mmengine - INFO - Epoch(train) [2][2250/4682] lr: 6.250000e-05 eta: 2 days, 11:46:09 time: 0.220476 data_time: 0.069601 memory: 2769 loss: 0.001612 loss_kpt: 0.001612 acc_pose: 0.423775
2023/07/22 14:59:49 - mmengine - INFO - Epoch(train) [2][2300/4682] lr: 6.250000e-05 eta: 2 days, 11:45:40 time: 0.217828 data_time: 0.067601 memory: 2769 loss: 0.001628 loss_kpt: 0.001628 acc_pose: 0.288921
2023/07/22 14:59:53 - mmengine - INFO - Exp name: td-hm_uniformer-s-8xb128-210e_coco-256x192_20230722_143251
2023/07/22 15:00:00 - mmengine - INFO - Epoch(train) [2][2350/4682] lr: 6.250000e-05 eta: 2 days, 11:44:54 time: 0.215318 data_time: 0.066771 memory: 2769 loss: 0.001574 loss_kpt: 0.001574 acc_pose: 0.390623
2023/07/22 15:00:11 - mmengine - INFO - Epoch(train) [2][2400/4682] lr: 6.250000e-05 eta: 2 days, 11:44:45 time: 0.220696 data_time: 0.070551 memory: 2769 loss: 0.001605 loss_kpt: 0.001605 acc_pose: 0.384320
2023/07/22 15:00:22 - mmengine - INFO - Epoch(train) [2][2450/4682] lr: 6.250000e-05 eta: 2 days, 11:44:45 time: 0.221823 data_time: 0.069686 memory: 2769 loss: 0.001636 loss_kpt: 0.001636 acc_pose: 0.353418
2023/07/22 15:00:33 - mmengine - INFO - Epoch(train) [2][2500/4682] lr: 6.250000e-05 eta: 2 days, 11:44:15 time: 0.217565 data_time: 0.069915 memory: 2769 loss: 0.001615 loss_kpt: 0.001615 acc_pose: 0.316838
2023/07/22 15:00:44 - mmengine - INFO - Epoch(train) [2][2550/4682] lr: 6.250000e-05 eta: 2 days, 11:43:58 time: 0.219580 data_time: 0.069860 memory: 2769 loss: 0.001571 loss_kpt: 0.001571 acc_pose: 0.376523
2023/07/22 15:00:56 - mmengine - INFO - Epoch(train) [2][2600/4682] lr: 6.250000e-05 eta: 2 days, 11:45:16 time: 0.233512 data_time: 0.069192 memory: 2769 loss: 0.001588 loss_kpt: 0.001588 acc_pose: 0.480474
2023/07/22 15:01:06 - mmengine - INFO - Epoch(train) [2][2650/4682] lr: 6.250000e-05 eta: 2 days, 11:44:29 time: 0.215090 data_time: 0.066871 memory: 2769 loss: 0.001616 loss_kpt: 0.001616 acc_pose: 0.384666
2023/07/22 15:01:17 - mmengine - INFO - Epoch(train) [2][2700/4682] lr: 6.250000e-05 eta: 2 days, 11:43:47 time: 0.215675 data_time: 0.067341 memory: 2769 loss: 0.001601 loss_kpt: 0.001601 acc_pose: 0.381176
2023/07/22 15:01:28 - mmengine - INFO - Epoch(train) [2][2750/4682] lr: 6.250000e-05 eta: 2 days, 11:43:21 time: 0.217987 data_time: 0.068197 memory: 2769 loss: 0.001593 loss_kpt: 0.001593 acc_pose: 0.439409
2023/07/22 15:01:39 - mmengine - INFO - Epoch(train) [2][2800/4682] lr: 6.250000e-05 eta: 2 days, 11:43:34 time: 0.224119 data_time: 0.071853 memory: 2769 loss: 0.001582 loss_kpt: 0.001582 acc_pose: 0.358909
2023/07/22 15:01:50 - mmengine - INFO - Epoch(train) [2][2850/4682] lr: 6.250000e-05 eta: 2 days, 11:43:36 time: 0.222361 data_time: 0.071014 memory: 2769 loss: 0.001562 loss_kpt: 0.001562 acc_pose: 0.423431
2023/07/22 15:02:01 - mmengine - INFO - Epoch(train) [2][2900/4682] lr: 6.250000e-05 eta: 2 days, 11:43:09 time: 0.217877 data_time: 0.067547 memory: 2769 loss: 0.001635 loss_kpt: 0.001635 acc_pose: 0.434224
2023/07/22 15:02:12 - mmengine - INFO - Epoch(train) [2][2950/4682] lr: 6.250000e-05 eta: 2 days, 11:42:45 time: 0.218263 data_time: 0.069244 memory: 2769 loss: 0.001584 loss_kpt: 0.001584 acc_pose: 0.392643
2023/07/22 15:02:23 - mmengine - INFO - Epoch(train) [2][3000/4682] lr: 6.250000e-05 eta: 2 days, 11:42:50 time: 0.222961 data_time: 0.072229 memory: 2769 loss: 0.001605 loss_kpt: 0.001605 acc_pose: 0.488786
2023/07/22 15:02:34 - mmengine - INFO - Epoch(train) [2][3050/4682] lr: 6.250000e-05 eta: 2 days, 11:42:46 time: 0.221490 data_time: 0.070006 memory: 2769 loss: 0.001579 loss_kpt: 0.001579 acc_pose: 0.462665
2023/07/22 15:02:46 - mmengine - INFO - Epoch(train) [2][3100/4682] lr: 6.250000e-05 eta: 2 days, 11:43:03 time: 0.224848 data_time: 0.072710 memory: 2769 loss: 0.001588 loss_kpt: 0.001588 acc_pose: 0.490568
2023/07/22 15:02:57 - mmengine - INFO - Epoch(train) [2][3150/4682] lr: 6.250000e-05 eta: 2 days, 11:43:02 time: 0.221932 data_time: 0.069415 memory: 2769 loss: 0.001578 loss_kpt: 0.001578 acc_pose: 0.445818
2023/07/22 15:03:09 - mmengine - INFO - Epoch(train) [2][3200/4682] lr: 6.250000e-05 eta: 2 days, 11:44:42 time: 0.238345 data_time: 0.085177 memory: 2769 loss: 0.001583 loss_kpt: 0.001583 acc_pose: 0.465223
2023/07/22 15:03:20 - mmengine - INFO - Epoch(train) [2][3250/4682] lr: 6.250000e-05 eta: 2 days, 11:44:50 time: 0.223617 data_time: 0.072932 memory: 2769 loss: 0.001555 loss_kpt: 0.001555 acc_pose: 0.393350
2023/07/22 15:03:31 - mmengine - INFO - Epoch(train) [2][3300/4682] lr: 6.250000e-05 eta: 2 days, 11:44:39 time: 0.220582 data_time: 0.071421 memory: 2769 loss: 0.001553 loss_kpt: 0.001553 acc_pose: 0.497468
2023/07/22 15:03:35 - mmengine - INFO - Exp name: td-hm_uniformer-s-8xb128-210e_coco-256x192_20230722_143251
2023/07/22 15:03:44 - mmengine - INFO - Epoch(train) [2][3350/4682] lr: 6.250000e-05 eta: 2 days, 11:47:42 time: 0.252405 data_time: 0.102398 memory: 2769 loss: 0.001547 loss_kpt: 0.001547 acc_pose: 0.425660
2023/07/22 15:03:54 - mmengine - INFO - Epoch(train) [2][3400/4682] lr: 6.250000e-05 eta: 2 days, 11:47:07 time: 0.216904 data_time: 0.069343 memory: 2769 loss: 0.001575 loss_kpt: 0.001575 acc_pose: 0.432068
2023/07/22 15:04:05 - mmengine - INFO - Epoch(train) [2][3450/4682] lr: 6.250000e-05 eta: 2 days, 11:46:22 time: 0.214931 data_time: 0.066422 memory: 2769 loss: 0.001567 loss_kpt: 0.001567 acc_pose: 0.369169
2023/07/22 15:04:16 - mmengine - INFO - Epoch(train) [2][3500/4682] lr: 6.250000e-05 eta: 2 days, 11:46:24 time: 0.222887 data_time: 0.071557 memory: 2769 loss: 0.001578 loss_kpt: 0.001578 acc_pose: 0.364742
2023/07/22 15:04:27 - mmengine - INFO - Epoch(train) [2][3550/4682] lr: 6.250000e-05 eta: 2 days, 11:45:43 time: 0.215626 data_time: 0.068208 memory: 2769 loss: 0.001581 loss_kpt: 0.001581 acc_pose: 0.356414
2023/07/22 15:04:39 - mmengine - INFO - Epoch(train) [2][3600/4682] lr: 6.250000e-05 eta: 2 days, 11:46:53 time: 0.234540 data_time: 0.071323 memory: 2769 loss: 0.001563 loss_kpt: 0.001563 acc_pose: 0.463508
2023/07/22 15:04:50 - mmengine - INFO - Epoch(train) [2][3650/4682] lr: 6.250000e-05 eta: 2 days, 11:46:51 time: 0.222149 data_time: 0.072262 memory: 2769 loss: 0.001523 loss_kpt: 0.001523 acc_pose: 0.475855
2023/07/22 15:05:01 - mmengine - INFO - Epoch(train) [2][3700/4682] lr: 6.250000e-05 eta: 2 days, 11:46:11 time: 0.215929 data_time: 0.068524 memory: 2769 loss: 0.001556 loss_kpt: 0.001556 acc_pose: 0.395543
2023/07/22 15:05:12 - mmengine - INFO - Epoch(train) [2][3750/4682] lr: 6.250000e-05 eta: 2 days, 11:46:03 time: 0.221173 data_time: 0.070995 memory: 2769 loss: 0.001581 loss_kpt: 0.001581 acc_pose: 0.471426
2023/07/22 15:05:23 - mmengine - INFO - Epoch(train) [2][3800/4682] lr: 6.250000e-05 eta: 2 days, 11:45:49 time: 0.220183 data_time: 0.069493 memory: 2769 loss: 0.001572 loss_kpt: 0.001572 acc_pose: 0.493317
2023/07/22 15:05:34 - mmengine - INFO - Epoch(train) [2][3850/4682] lr: 6.250000e-05 eta: 2 days, 11:45:14 time: 0.216588 data_time: 0.068845 memory: 2769 loss: 0.001575 loss_kpt: 0.001575 acc_pose: 0.418905
2023/07/22 15:05:45 - mmengine - INFO - Epoch(train) [2][3900/4682] lr: 6.250000e-05 eta: 2 days, 11:44:57 time: 0.219552 data_time: 0.070914 memory: 2769 loss: 0.001512 loss_kpt: 0.001512 acc_pose: 0.500859
2023/07/22 15:05:56 - mmengine - INFO - Epoch(train) [2][3950/4682] lr: 6.250000e-05 eta: 2 days, 11:44:37 time: 0.219205 data_time: 0.069279 memory: 2769 loss: 0.001523 loss_kpt: 0.001523 acc_pose: 0.393162
2023/07/22 15:06:06 - mmengine - INFO - Epoch(train) [2][4000/4682] lr: 6.250000e-05 eta: 2 days, 11:44:16 time: 0.218842 data_time: 0.068649 memory: 2769 loss: 0.001549 loss_kpt: 0.001549 acc_pose: 0.447751
2023/07/22 15:06:18 - mmengine - INFO - Epoch(train) [2][4050/4682] lr: 6.250000e-05 eta: 2 days, 11:44:05 time: 0.220770 data_time: 0.069756 memory: 2769 loss: 0.001534 loss_kpt: 0.001534 acc_pose: 0.459695
2023/07/22 15:06:29 - mmengine - INFO - Epoch(train) [2][4100/4682] lr: 6.250000e-05 eta: 2 days, 11:44:01 time: 0.221805 data_time: 0.072117 memory: 2769 loss: 0.001576 loss_kpt: 0.001576 acc_pose: 0.466968
2023/07/22 15:06:40 - mmengine - INFO - Epoch(train) [2][4150/4682] lr: 6.250000e-05 eta: 2 days, 11:43:46 time: 0.219979 data_time: 0.070291 memory: 2769 loss: 0.001563 loss_kpt: 0.001563 acc_pose: 0.515747
2023/07/22 15:06:51 - mmengine - INFO - Epoch(train) [2][4200/4682] lr: 6.250000e-05 eta: 2 days, 11:44:50 time: 0.234497 data_time: 0.085877 memory: 2769 loss: 0.001527 loss_kpt: 0.001527 acc_pose: 0.451229
2023/07/22 15:07:03 - mmengine - INFO - Epoch(train) [2][4250/4682] lr: 6.250000e-05 eta: 2 days, 11:45:02 time: 0.224861 data_time: 0.072720 memory: 2769 loss: 0.001534 loss_kpt: 0.001534 acc_pose: 0.413065
2023/07/22 15:07:14 - mmengine - INFO - Epoch(train) [2][4300/4682] lr: 6.250000e-05 eta: 2 days, 11:44:42 time: 0.219114 data_time: 0.069655 memory: 2769 loss: 0.001539 loss_kpt: 0.001539 acc_pose: 0.386309
2023/07/22 15:07:18 - mmengine - INFO - Exp name: td-hm_uniformer-s-8xb128-210e_coco-256x192_20230722_143251
2023/07/22 15:07:25 - mmengine - INFO - Epoch(train) [2][4350/4682] lr: 6.250000e-05 eta: 2 days, 11:45:05 time: 0.227090 data_time: 0.073618 memory: 2769 loss: 0.001558 loss_kpt: 0.001558 acc_pose: 0.374963
2023/07/22 15:07:36 - mmengine - INFO - Epoch(train) [2][4400/4682] lr: 6.250000e-05 eta: 2 days, 11:44:54 time: 0.220883 data_time: 0.069260 memory: 2769 loss: 0.001547 loss_kpt: 0.001547 acc_pose: 0.421333
2023/07/22 15:07:47 - mmengine - INFO - Epoch(train) [2][4450/4682] lr: 6.250000e-05 eta: 2 days, 11:45:07 time: 0.225217 data_time: 0.071588 memory: 2769 loss: 0.001521 loss_kpt: 0.001521 acc_pose: 0.419866
2023/07/22 15:07:59 - mmengine - INFO - Epoch(train) [2][4500/4682] lr: 6.250000e-05 eta: 2 days, 11:45:38 time: 0.228904 data_time: 0.075243 memory: 2769 loss: 0.001526 loss_kpt: 0.001526 acc_pose: 0.472045
2023/07/22 15:08:10 - mmengine - INFO - Epoch(train) [2][4550/4682] lr: 6.250000e-05 eta: 2 days, 11:45:40 time: 0.223317 data_time: 0.070567 memory: 2769 loss: 0.001536 loss_kpt: 0.001536 acc_pose: 0.442823
2023/07/22 15:08:22 - mmengine - INFO - Epoch(train) [2][4600/4682] lr: 6.250000e-05 eta: 2 days, 11:47:18 time: 0.241568 data_time: 0.072527 memory: 2769 loss: 0.001535 loss_kpt: 0.001535 acc_pose: 0.523795
2023/07/22 15:08:33 - mmengine - INFO - Epoch(train) [2][4650/4682] lr: 6.250000e-05 eta: 2 days, 11:47:35 time: 0.226505 data_time: 0.074145 memory: 2769 loss: 0.001525 loss_kpt: 0.001525 acc_pose: 0.375999
2023/07/22 15:08:40 - mmengine - INFO - Exp name: td-hm_uniformer-s-8xb128-210e_coco-256x192_20230722_143251
2023/07/22 15:08:52 - mmengine - INFO - Epoch(train) [3][ 50/4682] lr: 6.250000e-05 eta: 2 days, 11:48:02 time: 0.228728 data_time: 0.077746 memory: 2769 loss: 0.001539 loss_kpt: 0.001539 acc_pose: 0.389852
2023/07/22 15:09:03 - mmengine - INFO - Epoch(train) [3][ 100/4682] lr: 6.250000e-05 eta: 2 days, 11:48:33 time: 0.229128 data_time: 0.076196 memory: 2769 loss: 0.001536 loss_kpt: 0.001536 acc_pose: 0.374548
2023/07/22 15:09:14 - mmengine - INFO - Epoch(train) [3][ 150/4682] lr: 6.250000e-05 eta: 2 days, 11:48:35 time: 0.223625 data_time: 0.070833 memory: 2769 loss: 0.001517 loss_kpt: 0.001517 acc_pose: 0.437881
2023/07/22 15:09:26 - mmengine - INFO - Epoch(train) [3][ 200/4682] lr: 6.250000e-05 eta: 2 days, 11:48:53 time: 0.226991 data_time: 0.073356 memory: 2769 loss: 0.001556 loss_kpt: 0.001556 acc_pose: 0.403673
2023/07/22 15:09:37 - mmengine - INFO - Epoch(train) [3][ 250/4682] lr: 6.250000e-05 eta: 2 days, 11:49:04 time: 0.225397 data_time: 0.071258 memory: 2769 loss: 0.001558 loss_kpt: 0.001558 acc_pose: 0.453507
2023/07/22 15:09:48 - mmengine - INFO - Epoch(train) [3][ 300/4682] lr: 6.250000e-05 eta: 2 days, 11:49:10 time: 0.224612 data_time: 0.070947 memory: 2769 loss: 0.001525 loss_kpt: 0.001525 acc_pose: 0.435017
2023/07/22 15:10:00 - mmengine - INFO - Epoch(train) [3][ 350/4682] lr: 6.250000e-05 eta: 2 days, 11:49:20 time: 0.225398 data_time: 0.070415 memory: 2769 loss: 0.001494 loss_kpt: 0.001494 acc_pose: 0.512108
2023/07/22 15:10:11 - mmengine - INFO - Epoch(train) [3][ 400/4682] lr: 6.250000e-05 eta: 2 days, 11:50:30 time: 0.237399 data_time: 0.085648 memory: 2769 loss: 0.001521 loss_kpt: 0.001521 acc_pose: 0.386923
2023/07/22 15:10:23 - mmengine - INFO - Epoch(train) [3][ 450/4682] lr: 6.250000e-05 eta: 2 days, 11:51:43 time: 0.238253 data_time: 0.086934 memory: 2769 loss: 0.001520 loss_kpt: 0.001520 acc_pose: 0.508170
2023/07/22 15:10:35 - mmengine - INFO - Epoch(train) [3][ 500/4682] lr: 6.250000e-05 eta: 2 days, 11:52:08 time: 0.228809 data_time: 0.075898 memory: 2769 loss: 0.001501 loss_kpt: 0.001501 acc_pose: 0.333293
2023/07/22 15:10:46 - mmengine - INFO - Epoch(train) [3][ 550/4682] lr: 6.250000e-05 eta: 2 days, 11:52:16 time: 0.225379 data_time: 0.072405 memory: 2769 loss: 0.001476 loss_kpt: 0.001476 acc_pose: 0.325959
2023/07/22 15:10:57 - mmengine - INFO - Epoch(train) [3][ 600/4682] lr: 6.250000e-05 eta: 2 days, 11:52:02 time: 0.220697 data_time: 0.069189 memory: 2769 loss: 0.001509 loss_kpt: 0.001509 acc_pose: 0.460931
2023/07/22 15:11:05 - mmengine - INFO - Exp name: td-hm_uniformer-s-8xb128-210e_coco-256x192_20230722_143251
2023/07/22 15:11:08 - mmengine - INFO - Epoch(train) [3][ 650/4682] lr: 6.250000e-05 eta: 2 days, 11:52:12 time: 0.225951 data_time: 0.073455 memory: 2769 loss: 0.001527 loss_kpt: 0.001527 acc_pose: 0.443181
2023/07/22 15:11:21 - mmengine - INFO - Epoch(train) [3][ 700/4682] lr: 6.250000e-05 eta: 2 days, 11:54:06 time: 0.247277 data_time: 0.093363 memory: 2769 loss: 0.001508 loss_kpt: 0.001508 acc_pose: 0.397818
2023/07/22 15:11:32 - mmengine - INFO - Epoch(train) [3][ 750/4682] lr: 6.250000e-05 eta: 2 days, 11:53:54 time: 0.221287 data_time: 0.070861 memory: 2769 loss: 0.001506 loss_kpt: 0.001506 acc_pose: 0.444112
2023/07/22 15:11:43 - mmengine - INFO - Epoch(train) [3][ 800/4682] lr: 6.250000e-05 eta: 2 days, 11:53:50 time: 0.223241 data_time: 0.071001 memory: 2769 loss: 0.001499 loss_kpt: 0.001499 acc_pose: 0.474696
2023/07/22 15:11:54 - mmengine - INFO - Epoch(train) [3][ 850/4682] lr: 6.250000e-05 eta: 2 days, 11:54:01 time: 0.226083 data_time: 0.073321 memory: 2769 loss: 0.001539 loss_kpt: 0.001539 acc_pose: 0.352767
2023/07/22 15:12:06 - mmengine - INFO - Epoch(train) [3][ 900/4682] lr: 6.250000e-05 eta: 2 days, 11:55:02 time: 0.236974 data_time: 0.069962 memory: 2769 loss: 0.001515 loss_kpt: 0.001515 acc_pose: 0.391092
2023/07/22 15:12:17 - mmengine - INFO - Epoch(train) [3][ 950/4682] lr: 6.250000e-05 eta: 2 days, 11:55:10 time: 0.225629 data_time: 0.072428 memory: 2769 loss: 0.001516 loss_kpt: 0.001516 acc_pose: 0.413933
2023/07/22 15:12:29 - mmengine - INFO - Epoch(train) [3][1000/4682] lr: 6.250000e-05 eta: 2 days, 11:55:17 time: 0.225717 data_time: 0.072638 memory: 2769 loss: 0.001517 loss_kpt: 0.001517 acc_pose: 0.568354
2023/07/22 15:12:40 - mmengine - INFO - Epoch(train) [3][1050/4682] lr: 6.250000e-05 eta: 2 days, 11:55:07 time: 0.221957 data_time: 0.072911 memory: 2769 loss: 0.001509 loss_kpt: 0.001509 acc_pose: 0.412208
2023/07/22 15:12:51 - mmengine - INFO - Epoch(train) [3][1100/4682] lr: 6.250000e-05 eta: 2 days, 11:55:01 time: 0.222699 data_time: 0.073540 memory: 2769 loss: 0.001503 loss_kpt: 0.001503 acc_pose: 0.438893
2023/07/22 15:13:02 - mmengine - INFO - Epoch(train) [3][1150/4682] lr: 6.250000e-05 eta: 2 days, 11:54:52 time: 0.222204 data_time: 0.071423 memory: 2769 loss: 0.001505 loss_kpt: 0.001505 acc_pose: 0.458421
2023/07/22 15:13:13 - mmengine - INFO - Epoch(train) [3][1200/4682] lr: 6.250000e-05 eta: 2 days, 11:54:34 time: 0.220323 data_time: 0.070108 memory: 2769 loss: 0.001493 loss_kpt: 0.001493 acc_pose: 0.550778
2023/07/22 15:13:24 - mmengine - INFO - Epoch(train) [3][1250/4682] lr: 6.250000e-05 eta: 2 days, 11:54:08 time: 0.218356 data_time: 0.069542 memory: 2769 loss: 0.001499 loss_kpt: 0.001499 acc_pose: 0.388994
2023/07/22 15:13:35 - mmengine - INFO - Epoch(train) [3][1300/4682] lr: 6.250000e-05 eta: 2 days, 11:54:00 time: 0.222448 data_time: 0.072866 memory: 2769 loss: 0.001525 loss_kpt: 0.001525 acc_pose: 0.383418
2023/07/22 15:13:46 - mmengine - INFO - Epoch(train) [3][1350/4682] lr: 6.250000e-05 eta: 2 days, 11:53:24 time: 0.216230 data_time: 0.067260 memory: 2769 loss: 0.001527 loss_kpt: 0.001527 acc_pose: 0.434656
2023/07/22 15:13:57 - mmengine - INFO - Epoch(train) [3][1400/4682] lr: 6.250000e-05 eta: 2 days, 11:52:50 time: 0.216686 data_time: 0.067725 memory: 2769 loss: 0.001486 loss_kpt: 0.001486 acc_pose: 0.432514
2023/07/22 15:14:09 - mmengine - INFO - Epoch(train) [3][1450/4682] lr: 6.250000e-05 eta: 2 days, 11:53:46 time: 0.236521 data_time: 0.086240 memory: 2769 loss: 0.001474 loss_kpt: 0.001474 acc_pose: 0.453256
2023/07/22 15:14:20 - mmengine - INFO - Epoch(train) [3][1500/4682] lr: 6.250000e-05 eta: 2 days, 11:53:22 time: 0.219015 data_time: 0.069292 memory: 2769 loss: 0.001516 loss_kpt: 0.001516 acc_pose: 0.444045
2023/07/22 15:14:30 - mmengine - INFO - Epoch(train) [3][1550/4682] lr: 6.250000e-05 eta: 2 days, 11:53:00 time: 0.219084 data_time: 0.069413 memory: 2769 loss: 0.001479 loss_kpt: 0.001479 acc_pose: 0.489273
2023/07/22 15:14:41 - mmengine - INFO - Epoch(train) [3][1600/4682] lr: 6.250000e-05 eta: 2 days, 11:52:32 time: 0.218035 data_time: 0.069572 memory: 2769 loss: 0.001488 loss_kpt: 0.001488 acc_pose: 0.459996
2023/07/22 15:14:49 - mmengine - INFO - Exp name: td-hm_uniformer-s-8xb128-210e_coco-256x192_20230722_143251
2023/07/22 15:14:52 - mmengine - INFO - Epoch(train) [3][1650/4682] lr: 6.250000e-05 eta: 2 days, 11:51:59 time: 0.216720 data_time: 0.068382 memory: 2769 loss: 0.001481 loss_kpt: 0.001481 acc_pose: 0.421594
2023/07/22 15:15:03 - mmengine - INFO - Epoch(train) [3][1700/4682] lr: 6.250000e-05 eta: 2 days, 11:51:33 time: 0.218246 data_time: 0.069050 memory: 2769 loss: 0.001527 loss_kpt: 0.001527 acc_pose: 0.491073
2023/07/22 15:15:14 - mmengine - INFO - Epoch(train) [3][1750/4682] lr: 6.250000e-05 eta: 2 days, 11:51:08 time: 0.218465 data_time: 0.068737 memory: 2769 loss: 0.001490 loss_kpt: 0.001490 acc_pose: 0.452824
2023/07/22 15:15:25 - mmengine - INFO - Epoch(train) [3][1800/4682] lr: 6.250000e-05 eta: 2 days, 11:50:40 time: 0.217915 data_time: 0.069640 memory: 2769 loss: 0.001457 loss_kpt: 0.001457 acc_pose: 0.477751
2023/07/22 15:15:37 - mmengine - INFO - Epoch(train) [3][1850/4682] lr: 6.250000e-05 eta: 2 days, 11:51:27 time: 0.234829 data_time: 0.069162 memory: 2769 loss: 0.001489 loss_kpt: 0.001489 acc_pose: 0.458187
2023/07/22 15:15:48 - mmengine - INFO - Epoch(train) [3][1900/4682] lr: 6.250000e-05 eta: 2 days, 11:50:58 time: 0.217580 data_time: 0.068042 memory: 2769 loss: 0.001459 loss_kpt: 0.001459 acc_pose: 0.535764
2023/07/22 15:15:58 - mmengine - INFO - Epoch(train) [3][1950/4682] lr: 6.250000e-05 eta: 2 days, 11:50:22 time: 0.215908 data_time: 0.066592 memory: 2769 loss: 0.001455 loss_kpt: 0.001455 acc_pose: 0.499629
2023/07/22 15:16:09 - mmengine - INFO - Epoch(train) [3][2000/4682] lr: 6.250000e-05 eta: 2 days, 11:49:39 time: 0.214302 data_time: 0.066167 memory: 2769 loss: 0.001461 loss_kpt: 0.001461 acc_pose: 0.375722
2023/07/22 15:16:20 - mmengine - INFO - Epoch(train) [3][2050/4682] lr: 6.250000e-05 eta: 2 days, 11:49:10 time: 0.217361 data_time: 0.068411 memory: 2769 loss: 0.001514 loss_kpt: 0.001514 acc_pose: 0.493885
2023/07/22 15:16:31 - mmengine - INFO - Epoch(train) [3][2100/4682] lr: 6.250000e-05 eta: 2 days, 11:48:29 time: 0.214414 data_time: 0.066097 memory: 2769 loss: 0.001464 loss_kpt: 0.001464 acc_pose: 0.489009
2023/07/22 15:16:41 - mmengine - INFO - Epoch(train) [3][2150/4682] lr: 6.250000e-05 eta: 2 days, 11:47:51 time: 0.215387 data_time: 0.067409 memory: 2769 loss: 0.001457 loss_kpt: 0.001457 acc_pose: 0.456484
2023/07/22 15:16:52 - mmengine - INFO - Epoch(train) [3][2200/4682] lr: 6.250000e-05 eta: 2 days, 11:47:32 time: 0.219605 data_time: 0.069114 memory: 2769 loss: 0.001480 loss_kpt: 0.001480 acc_pose: 0.388902
2023/07/22 15:17:03 - mmengine - INFO - Epoch(train) [3][2250/4682] lr: 6.250000e-05 eta: 2 days, 11:47:17 time: 0.220411 data_time: 0.067490 memory: 2769 loss: 0.001506 loss_kpt: 0.001506 acc_pose: 0.420182
2023/07/22 15:17:14 - mmengine - INFO - Epoch(train) [3][2300/4682] lr: 6.250000e-05 eta: 2 days, 11:46:59 time: 0.219991 data_time: 0.070105 memory: 2769 loss: 0.001506 loss_kpt: 0.001506 acc_pose: 0.477168
2023/07/22 15:17:26 - mmengine - INFO - Epoch(train) [3][2350/4682] lr: 6.250000e-05 eta: 2 days, 11:46:47 time: 0.221399 data_time: 0.070510 memory: 2769 loss: 0.001508 loss_kpt: 0.001508 acc_pose: 0.445495
2023/07/22 15:17:37 - mmengine - INFO - Epoch(train) [3][2400/4682] lr: 6.250000e-05 eta: 2 days, 11:46:27 time: 0.219253 data_time: 0.070244 memory: 2769 loss: 0.001470 loss_kpt: 0.001470 acc_pose: 0.510175
2023/07/22 15:17:49 - mmengine - INFO - Epoch(train) [3][2450/4682] lr: 6.250000e-05 eta: 2 days, 11:48:01 time: 0.247133 data_time: 0.096268 memory: 2769 loss: 0.001488 loss_kpt: 0.001488 acc_pose: 0.451647
2023/07/22 15:18:00 - mmengine - INFO - Epoch(train) [3][2500/4682] lr: 6.250000e-05 eta: 2 days, 11:47:25 time: 0.215521 data_time: 0.066550 memory: 2769 loss: 0.001459 loss_kpt: 0.001459 acc_pose: 0.455389
2023/07/22 15:18:10 - mmengine - INFO - Epoch(train) [3][2550/4682] lr: 6.250000e-05 eta: 2 days, 11:46:53 time: 0.216507 data_time: 0.068897 memory: 2769 loss: 0.001446 loss_kpt: 0.001446 acc_pose: 0.416623
2023/07/22 15:18:21 - mmengine - INFO - Epoch(train) [3][2600/4682] lr: 6.250000e-05 eta: 2 days, 11:46:33 time: 0.219372 data_time: 0.070798 memory: 2769 loss: 0.001473 loss_kpt: 0.001473 acc_pose: 0.480012
2023/07/22 15:18:29 - mmengine - INFO - Exp name: td-hm_uniformer-s-8xb128-210e_coco-256x192_20230722_143251
2023/07/22 15:18:32 - mmengine - INFO - Epoch(train) [3][2650/4682] lr: 6.250000e-05 eta: 2 days, 11:46:19 time: 0.220712 data_time: 0.072121 memory: 2769 loss: 0.001465 loss_kpt: 0.001465 acc_pose: 0.578642
2023/07/22 15:18:44 - mmengine - INFO - Epoch(train) [3][2700/4682] lr: 6.250000e-05 eta: 2 days, 11:46:15 time: 0.223269 data_time: 0.070139 memory: 2769 loss: 0.001458 loss_kpt: 0.001458 acc_pose: 0.408636
2023/07/22 15:18:55 - mmengine - INFO - Epoch(train) [3][2750/4682] lr: 6.250000e-05 eta: 2 days, 11:45:56 time: 0.219595 data_time: 0.069752 memory: 2769 loss: 0.001433 loss_kpt: 0.001433 acc_pose: 0.406640
2023/07/22 15:19:05 - mmengine - INFO - Epoch(train) [3][2800/4682] lr: 6.250000e-05 eta: 2 days, 11:45:20 time: 0.215343 data_time: 0.066182 memory: 2769 loss: 0.001445 loss_kpt: 0.001445 acc_pose: 0.447996
2023/07/22 15:19:17 - mmengine - INFO - Epoch(train) [3][2850/4682] lr: 6.250000e-05 eta: 2 days, 11:46:09 time: 0.236678 data_time: 0.070048 memory: 2769 loss: 0.001494 loss_kpt: 0.001494 acc_pose: 0.404458
2023/07/22 15:19:28 - mmengine - INFO - Epoch(train) [3][2900/4682] lr: 6.250000e-05 eta: 2 days, 11:45:53 time: 0.220321 data_time: 0.070539 memory: 2769 loss: 0.001453 loss_kpt: 0.001453 acc_pose: 0.424017
2023/07/22 15:19:39 - mmengine - INFO - Epoch(train) [3][2950/4682] lr: 6.250000e-05 eta: 2 days, 11:45:29 time: 0.218431 data_time: 0.067726 memory: 2769 loss: 0.001520 loss_kpt: 0.001520 acc_pose: 0.483733
2023/07/22 15:19:50 - mmengine - INFO - Epoch(train) [3][3000/4682] lr: 6.250000e-05 eta: 2 days, 11:45:06 time: 0.218577 data_time: 0.068489 memory: 2769 loss: 0.001482 loss_kpt: 0.001482 acc_pose: 0.390663
2023/07/22 15:20:01 - mmengine - INFO - Epoch(train) [3][3050/4682] lr: 6.250000e-05 eta: 2 days, 11:44:43 time: 0.218434 data_time: 0.070400 memory: 2769 loss: 0.001468 loss_kpt: 0.001468 acc_pose: 0.427277
2023/07/22 15:20:12 - mmengine - INFO - Epoch(train) [3][3100/4682] lr: 6.250000e-05 eta: 2 days, 11:44:29 time: 0.220808 data_time: 0.071014 memory: 2769 loss: 0.001442 loss_kpt: 0.001442 acc_pose: 0.528775
2023/07/22 15:20:23 - mmengine - INFO - Epoch(train) [3][3150/4682] lr: 6.250000e-05 eta: 2 days, 11:44:18 time: 0.221541 data_time: 0.070337 memory: 2769 loss: 0.001464 loss_kpt: 0.001464 acc_pose: 0.530323
2023/07/22 15:20:34 - mmengine - INFO - Epoch(train) [3][3200/4682] lr: 6.250000e-05 eta: 2 days, 11:44:05 time: 0.220914 data_time: 0.069655 memory: 2769 loss: 0.001450 loss_kpt: 0.001450 acc_pose: 0.396172
2023/07/22 15:20:45 - mmengine - INFO - Epoch(train) [3][3250/4682] lr: 6.250000e-05 eta: 2 days, 11:43:57 time: 0.222383 data_time: 0.071079 memory: 2769 loss: 0.001455 loss_kpt: 0.001455 acc_pose: 0.564231
2023/07/22 15:20:57 - mmengine - INFO - Epoch(train) [3][3300/4682] lr: 6.250000e-05 eta: 2 days, 11:45:01 time: 0.241309 data_time: 0.086130 memory: 2769 loss: 0.001463 loss_kpt: 0.001463 acc_pose: 0.499546
2023/07/22 15:21:08 - mmengine - INFO - Epoch(train) [3][3350/4682] lr: 6.250000e-05 eta: 2 days, 11:44:34 time: 0.217348 data_time: 0.068391 memory: 2769 loss: 0.001433 loss_kpt: 0.001433 acc_pose: 0.486005
2023/07/22 15:21:19 - mmengine - INFO - Epoch(train) [3][3400/4682] lr: 6.250000e-05 eta: 2 days, 11:44:26 time: 0.222563 data_time: 0.072298 memory: 2769 loss: 0.001441 loss_kpt: 0.001441 acc_pose: 0.555127
2023/07/22 15:21:31 - mmengine - INFO - Epoch(train) [3][3450/4682] lr: 6.250000e-05 eta: 2 days, 11:45:20 time: 0.238730 data_time: 0.087200 memory: 2769 loss: 0.001437 loss_kpt: 0.001437 acc_pose: 0.536771
2023/07/22 15:21:43 - mmengine - INFO - Epoch(train) [3][3500/4682] lr: 6.250000e-05 eta: 2 days, 11:45:18 time: 0.224136 data_time: 0.072326 memory: 2769 loss: 0.001454 loss_kpt: 0.001454 acc_pose: 0.605151
2023/07/22 15:21:54 - mmengine - INFO - Epoch(train) [3][3550/4682] lr: 6.250000e-05 eta: 2 days, 11:45:03 time: 0.220573 data_time: 0.069013 memory: 2769 loss: 0.001445 loss_kpt: 0.001445 acc_pose: 0.476203
2023/07/22 15:22:05 - mmengine - INFO - Epoch(train) [3][3600/4682] lr: 6.250000e-05 eta: 2 days, 11:44:49 time: 0.220986 data_time: 0.070026 memory: 2769 loss: 0.001406 loss_kpt: 0.001406 acc_pose: 0.499655
2023/07/22 15:22:13 - mmengine - INFO - Exp name: td-hm_uniformer-s-8xb128-210e_coco-256x192_20230722_143251
2023/07/22 15:22:16 - mmengine - INFO - Epoch(train) [3][3650/4682] lr: 6.250000e-05 eta: 2 days, 11:44:31 time: 0.219798 data_time: 0.071113 memory: 2769 loss: 0.001459 loss_kpt: 0.001459 acc_pose: 0.420060
2023/07/22 15:22:27 - mmengine - INFO - Epoch(train) [3][3700/4682] lr: 6.250000e-05 eta: 2 days, 11:44:22 time: 0.222087 data_time: 0.070992 memory: 2769 loss: 0.001469 loss_kpt: 0.001469 acc_pose: 0.466726
2023/07/22 15:22:38 - mmengine - INFO - Epoch(train) [3][3750/4682] lr: 6.250000e-05 eta: 2 days, 11:44:03 time: 0.219632 data_time: 0.069718 memory: 2769 loss: 0.001445 loss_kpt: 0.001445 acc_pose: 0.371630
2023/07/22 15:22:49 - mmengine - INFO - Epoch(train) [3][3800/4682] lr: 6.250000e-05 eta: 2 days, 11:43:59 time: 0.223605 data_time: 0.071977 memory: 2769 loss: 0.001457 loss_kpt: 0.001457 acc_pose: 0.482615
2023/07/22 15:23:01 - mmengine - INFO - Epoch(train) [3][3850/4682] lr: 6.250000e-05 eta: 2 days, 11:44:33 time: 0.233919 data_time: 0.068537 memory: 2769 loss: 0.001433 loss_kpt: 0.001433 acc_pose: 0.563241
2023/07/22 15:23:11 - mmengine - INFO - Epoch(train) [3][3900/4682] lr: 6.250000e-05 eta: 2 days, 11:44:08 time: 0.217995 data_time: 0.067523 memory: 2769 loss: 0.001434 loss_kpt: 0.001434 acc_pose: 0.480374
2023/07/22 15:23:23 - mmengine - INFO - Epoch(train) [3][3950/4682] lr: 6.250000e-05 eta: 2 days, 11:43:54 time: 0.220818 data_time: 0.069681 memory: 2769 loss: 0.001454 loss_kpt: 0.001454 acc_pose: 0.499782
2023/07/22 15:23:33 - mmengine - INFO - Epoch(train) [3][4000/4682] lr: 6.250000e-05 eta: 2 days, 11:43:32 time: 0.218618 data_time: 0.069236 memory: 2769 loss: 0.001457 loss_kpt: 0.001457 acc_pose: 0.466018
2023/07/22 15:23:44 - mmengine - INFO - Epoch(train) [3][4050/4682] lr: 6.250000e-05 eta: 2 days, 11:43:12 time: 0.219392 data_time: 0.069481 memory: 2769 loss: 0.001442 loss_kpt: 0.001442 acc_pose: 0.521244
2023/07/22 15:23:55 - mmengine - INFO - Epoch(train) [3][4100/4682] lr: 6.250000e-05 eta: 2 days, 11:42:52 time: 0.219258 data_time: 0.069111 memory: 2769 loss: 0.001449 loss_kpt: 0.001449 acc_pose: 0.488747
2023/07/22 15:24:06 - mmengine - INFO - Epoch(train) [3][4150/4682] lr: 6.250000e-05 eta: 2 days, 11:42:30 time: 0.218605 data_time: 0.068648 memory: 2769 loss: 0.001440 loss_kpt: 0.001440 acc_pose: 0.496123
2023/07/22 15:24:17 - mmengine - INFO - Epoch(train) [3][4200/4682] lr: 6.250000e-05 eta: 2 days, 11:42:16 time: 0.220647 data_time: 0.069940 memory: 2769 loss: 0.001444 loss_kpt: 0.001444 acc_pose: 0.554808
2023/07/22 15:24:28 - mmengine - INFO - Epoch(train) [3][4250/4682] lr: 6.250000e-05 eta: 2 days, 11:41:46 time: 0.216402 data_time: 0.067053 memory: 2769 loss: 0.001433 loss_kpt: 0.001433 acc_pose: 0.380657
2023/07/22 15:24:39 - mmengine - INFO - Epoch(train) [3][4300/4682] lr: 6.250000e-05 eta: 2 days, 11:41:26 time: 0.219231 data_time: 0.068180 memory: 2769 loss: 0.001423 loss_kpt: 0.001423 acc_pose: 0.489721
2023/07/22 15:24:50 - mmengine - INFO - Epoch(train) [3][4350/4682] lr: 6.250000e-05 eta: 2 days, 11:41:02 time: 0.218099 data_time: 0.067306 memory: 2769 loss: 0.001446 loss_kpt: 0.001446 acc_pose: 0.480642
2023/07/22 15:25:01 - mmengine - INFO - Epoch(train) [3][4400/4682] lr: 6.250000e-05 eta: 2 days, 11:40:46 time: 0.220216 data_time: 0.070069 memory: 2769 loss: 0.001446 loss_kpt: 0.001446 acc_pose: 0.563972
2023/07/22 15:25:13 - mmengine - INFO - Epoch(train) [3][4450/4682] lr: 6.250000e-05 eta: 2 days, 11:41:12 time: 0.232098 data_time: 0.083050 memory: 2769 loss: 0.001438 loss_kpt: 0.001438 acc_pose: 0.490288
2023/07/22 15:25:24 - mmengine - INFO - Epoch(train) [3][4500/4682] lr: 6.250000e-05 eta: 2 days, 11:40:49 time: 0.218239 data_time: 0.070104 memory: 2769 loss: 0.001445 loss_kpt: 0.001445 acc_pose: 0.442514
2023/07/22 15:25:35 - mmengine - INFO - Epoch(train) [3][4550/4682] lr: 6.250000e-05 eta: 2 days, 11:40:37 time: 0.221468 data_time: 0.072447 memory: 2769 loss: 0.001436 loss_kpt: 0.001436 acc_pose: 0.394671
2023/07/22 15:25:46 - mmengine - INFO - Epoch(train) [3][4600/4682] lr: 6.250000e-05 eta: 2 days, 11:40:19 time: 0.219582 data_time: 0.069744 memory: 2769 loss: 0.001428 loss_kpt: 0.001428 acc_pose: 0.441705
2023/07/22 15:25:54 - mmengine - INFO - Exp name: td-hm_uniformer-s-8xb128-210e_coco-256x192_20230722_143251
2023/07/22 15:25:57 - mmengine - INFO - Epoch(train) [3][4650/4682] lr: 6.250000e-05 eta: 2 days, 11:40:07 time: 0.221277 data_time: 0.069339 memory: 2769 loss: 0.001419 loss_kpt: 0.001419 acc_pose: 0.550174
2023/07/22 15:26:04 - mmengine - INFO - Exp name: td-hm_uniformer-s-8xb128-210e_coco-256x192_20230722_143251 |
Here is a part of the dist_train log running on three 3090 GPUs: 07/24 10:33:33 - mmengine - INFO - Exp name: td-hm_uniformer-s-8xb128-210e_coco-256x192_20230724_092951
07/24 10:33:45 - mmengine - INFO - Epoch(train) [10][1000/1561] lr: 2.000000e-03 eta: 21:34:51 time: 0.258567 data_time: 0.088065 memory: 2863 loss: 0.001054 loss_kpt: 0.001054 acc_pose: 0.667949
07/24 10:33:58 - mmengine - INFO - Epoch(train) [10][1050/1561] lr: 2.000000e-03 eta: 21:34:36 time: 0.245400 data_time: 0.073074 memory: 2863 loss: 0.001058 loss_kpt: 0.001058 acc_pose: 0.643093
07/24 10:34:10 - mmengine - INFO - Epoch(train) [10][1100/1561] lr: 2.000000e-03 eta: 21:34:21 time: 0.246482 data_time: 0.070497 memory: 2863 loss: 0.001037 loss_kpt: 0.001037 acc_pose: 0.620019
07/24 10:34:22 - mmengine - INFO - Epoch(train) [10][1150/1561] lr: 2.000000e-03 eta: 21:34:02 time: 0.241395 data_time: 0.068484 memory: 2863 loss: 0.001044 loss_kpt: 0.001044 acc_pose: 0.742400
07/24 10:34:35 - mmengine - INFO - Epoch(train) [10][1200/1561] lr: 2.000000e-03 eta: 21:34:05 time: 0.263412 data_time: 0.069424 memory: 2863 loss: 0.001048 loss_kpt: 0.001048 acc_pose: 0.709707
07/24 10:34:47 - mmengine - INFO - Epoch(train) [10][1250/1561] lr: 2.000000e-03 eta: 21:33:45 time: 0.241096 data_time: 0.069936 memory: 2863 loss: 0.001023 loss_kpt: 0.001023 acc_pose: 0.731810
07/24 10:34:59 - mmengine - INFO - Epoch(train) [10][1300/1561] lr: 2.000000e-03 eta: 21:33:27 time: 0.243296 data_time: 0.071560 memory: 2863 loss: 0.001052 loss_kpt: 0.001052 acc_pose: 0.672277
07/24 10:35:13 - mmengine - INFO - Epoch(train) [10][1350/1561] lr: 2.000000e-03 eta: 21:33:35 time: 0.268337 data_time: 0.083195 memory: 2863 loss: 0.001055 loss_kpt: 0.001055 acc_pose: 0.703284
07/24 10:35:25 - mmengine - INFO - Epoch(train) [10][1400/1561] lr: 2.000000e-03 eta: 21:33:18 time: 0.243694 data_time: 0.072882 memory: 2863 loss: 0.001041 loss_kpt: 0.001041 acc_pose: 0.621418
07/24 10:35:37 - mmengine - INFO - Epoch(train) [10][1450/1561] lr: 2.000000e-03 eta: 21:33:04 time: 0.246809 data_time: 0.071920 memory: 2863 loss: 0.001051 loss_kpt: 0.001051 acc_pose: 0.673734
07/24 10:35:49 - mmengine - INFO - Epoch(train) [10][1500/1561] lr: 2.000000e-03 eta: 21:32:45 time: 0.242615 data_time: 0.069541 memory: 2863 loss: 0.001041 loss_kpt: 0.001041 acc_pose: 0.693784
07/24 10:36:02 - mmengine - INFO - Epoch(train) [10][1550/1561] lr: 2.000000e-03 eta: 21:32:26 time: 0.241543 data_time: 0.070940 memory: 2863 loss: 0.001035 loss_kpt: 0.001035 acc_pose: 0.661962
07/24 10:36:04 - mmengine - INFO - Exp name: td-hm_uniformer-s-8xb128-210e_coco-256x192_20230724_092951
07/24 10:36:04 - mmengine - INFO - Saving checkpoint at 10 epochs
07/24 10:36:49 - mmengine - INFO - Epoch(val) [10][ 50/136] eta: 0:01:10 time: 0.817474 data_time: 0.176064 memory: 3365
07/24 10:37:29 - mmengine - INFO - Epoch(val) [10][100/136] eta: 0:00:29 time: 0.800923 data_time: 0.157949 memory: 3365
07/24 10:38:38 - mmengine - INFO - Evaluating CocoMetric...
Loading and preparing results...
DONE (t=4.02s)
creating index...
index created!
Running per image evaluation...
Evaluate annotation type *keypoints*
DONE (t=9.73s).
Accumulating evaluation results...
DONE (t=0.31s).
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets= 20 ] = 0.538
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets= 20 ] = 0.815
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets= 20 ] = 0.588
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets= 20 ] = 0.508
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets= 20 ] = 0.598
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 20 ] = 0.608
Average Recall (AR) @[ IoU=0.50 | area= all | maxDets= 20 ] = 0.866
Average Recall (AR) @[ IoU=0.75 | area= all | maxDets= 20 ] = 0.662
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets= 20 ] = 0.567
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets= 20 ] = 0.666
07/24 10:38:52 - mmengine - INFO - Epoch(val) [10][136/136] coco/AP: 0.538381 coco/AP .5: 0.814657 coco/AP .75: 0.588496 coco/AP (M): 0.508142 coco/AP (L): 0.598121 coco/AR: 0.607746 coco/AR .5: 0.866184 coco/AR .75: 0.662469 coco/AR (M): 0.566976 coco/AR (L): 0.665515 data_time: 0.175768 time: 0.816618
07/24 10:38:55 - mmengine - INFO - The best checkpoint with 0.5384 coco/AP at 10 epoch is saved to best_coco_AP_epoch_10.pth. Seems like there is some ACC drop... |
Testing result on 07/24 14:04:55 - mmpose - INFO - Use torch.utils.checkpoint: False
07/24 14:04:55 - mmpose - INFO - torch.utils.checkpoint number: (0, 0, 0, 0)
07/24 14:04:55 - mmpose - INFO - Use global window for all blocks in stage3
07/24 14:04:56 - mmpose - INFO - Loads checkpoint by local backend from path: /root/mmpose/projects/uniformer/pretrained/uniformer_small_in1k.pth
07/24 14:04:56 - mmpose - WARNING - The model and loaded state dict do not match exactly
unexpected key in source state_dict: model
missing keys in source state_dict: patch_embed1.norm.weight, patch_embed1.norm.bias, patch_embed1.proj.weight, patch_embed1.proj.bias, patch_embed2.norm.weight, patch_embed2.norm.bias, patch_embed2.proj.weight, patch_embed2.proj.bias, patch_embed3.norm.weight, patch_embed3.norm.bias, patch_embed3.proj.weight, patch_embed3.proj.bias, patch_embed4.norm.weight, patch_embed4.norm.bias, patch_embed4.proj.weight, patch_embed4.proj.bias, blocks1.0.pos_embed.weight, blocks1.0.pos_embed.bias, blocks1.0.norm1.weight, blocks1.0.norm1.bias, blocks1.0.norm1.running_mean, blocks1.0.norm1.running_var, blocks1.0.conv1.weight, blocks1.0.conv1.bias, blocks1.0.conv2.weight, blocks1.0.conv2.bias, blocks1.0.attn.weight, blocks1.0.attn.bias, blocks1.0.norm2.weight, blocks1.0.norm2.bias, blocks1.0.norm2.running_mean, blocks1.0.norm2.running_var, blocks1.0.mlp.fc1.weight, blocks1.0.mlp.fc1.bias, blocks1.0.mlp.fc2.weight, blocks1.0.mlp.fc2.bias, blocks1.1.pos_embed.weight, blocks1.1.pos_embed.bias, blocks1.1.norm1.weight, blocks1.1.norm1.bias, blocks1.1.norm1.running_mean, blocks1.1.norm1.running_var, blocks1.1.conv1.weight, blocks1.1.conv1.bias, blocks1.1.conv2.weight, blocks1.1.conv2.bias, blocks1.1.attn.weight, blocks1.1.attn.bias, blocks1.1.norm2.weight, blocks1.1.norm2.bias, blocks1.1.norm2.running_mean, blocks1.1.norm2.running_var, blocks1.1.mlp.fc1.weight, blocks1.1.mlp.fc1.bias, blocks1.1.mlp.fc2.weight, blocks1.1.mlp.fc2.bias, blocks1.2.pos_embed.weight, blocks1.2.pos_embed.bias, blocks1.2.norm1.weight, blocks1.2.norm1.bias, blocks1.2.norm1.running_mean, blocks1.2.norm1.running_var, blocks1.2.conv1.weight, blocks1.2.conv1.bias, blocks1.2.conv2.weight, blocks1.2.conv2.bias, blocks1.2.attn.weight, blocks1.2.attn.bias, blocks1.2.norm2.weight, blocks1.2.norm2.bias, blocks1.2.norm2.running_mean, blocks1.2.norm2.running_var, blocks1.2.mlp.fc1.weight, blocks1.2.mlp.fc1.bias, blocks1.2.mlp.fc2.weight, blocks1.2.mlp.fc2.bias, norm1.weight, norm1.bias, blocks2.0.pos_embed.weight, blocks2.0.pos_embed.bias, blocks2.0.norm1.weight, blocks2.0.norm1.bias, blocks2.0.norm1.running_mean, blocks2.0.norm1.running_var, blocks2.0.conv1.weight, blocks2.0.conv1.bias, blocks2.0.conv2.weight, blocks2.0.conv2.bias, blocks2.0.attn.weight, blocks2.0.attn.bias, blocks2.0.norm2.weight, blocks2.0.norm2.bias, blocks2.0.norm2.running_mean, blocks2.0.norm2.running_var, blocks2.0.mlp.fc1.weight, blocks2.0.mlp.fc1.bias, blocks2.0.mlp.fc2.weight, blocks2.0.mlp.fc2.bias, blocks2.1.pos_embed.weight, blocks2.1.pos_embed.bias, blocks2.1.norm1.weight, blocks2.1.norm1.bias, blocks2.1.norm1.running_mean, blocks2.1.norm1.running_var, blocks2.1.conv1.weight, blocks2.1.conv1.bias, blocks2.1.conv2.weight, blocks2.1.conv2.bias, blocks2.1.attn.weight, blocks2.1.attn.bias, blocks2.1.norm2.weight, blocks2.1.norm2.bias, blocks2.1.norm2.running_mean, blocks2.1.norm2.running_var, blocks2.1.mlp.fc1.weight, blocks2.1.mlp.fc1.bias, blocks2.1.mlp.fc2.weight, blocks2.1.mlp.fc2.bias, blocks2.2.pos_embed.weight, blocks2.2.pos_embed.bias, blocks2.2.norm1.weight, blocks2.2.norm1.bias, blocks2.2.norm1.running_mean, blocks2.2.norm1.running_var, blocks2.2.conv1.weight, blocks2.2.conv1.bias, blocks2.2.conv2.weight, blocks2.2.conv2.bias, blocks2.2.attn.weight, blocks2.2.attn.bias, blocks2.2.norm2.weight, blocks2.2.norm2.bias, blocks2.2.norm2.running_mean, blocks2.2.norm2.running_var, blocks2.2.mlp.fc1.weight, blocks2.2.mlp.fc1.bias, blocks2.2.mlp.fc2.weight, blocks2.2.mlp.fc2.bias, blocks2.3.pos_embed.weight, blocks2.3.pos_embed.bias, blocks2.3.norm1.weight, blocks2.3.norm1.bias, blocks2.3.norm1.running_mean, blocks2.3.norm1.running_var, blocks2.3.conv1.weight, blocks2.3.conv1.bias, blocks2.3.conv2.weight, blocks2.3.conv2.bias, blocks2.3.attn.weight, blocks2.3.attn.bias, blocks2.3.norm2.weight, blocks2.3.norm2.bias, blocks2.3.norm2.running_mean, blocks2.3.norm2.running_var, blocks2.3.mlp.fc1.weight, blocks2.3.mlp.fc1.bias, blocks2.3.mlp.fc2.weight, blocks2.3.mlp.fc2.bias, norm2.weight, norm2.bias, blocks3.0.pos_embed.weight, blocks3.0.pos_embed.bias, blocks3.0.norm1.weight, blocks3.0.norm1.bias, blocks3.0.attn.qkv.weight, blocks3.0.attn.qkv.bias, blocks3.0.attn.proj.weight, blocks3.0.attn.proj.bias, blocks3.0.norm2.weight, blocks3.0.norm2.bias, blocks3.0.mlp.fc1.weight, blocks3.0.mlp.fc1.bias, blocks3.0.mlp.fc2.weight, blocks3.0.mlp.fc2.bias, blocks3.1.pos_embed.weight, blocks3.1.pos_embed.bias, blocks3.1.norm1.weight, blocks3.1.norm1.bias, blocks3.1.attn.qkv.weight, blocks3.1.attn.qkv.bias, blocks3.1.attn.proj.weight, blocks3.1.attn.proj.bias, blocks3.1.norm2.weight, blocks3.1.norm2.bias, blocks3.1.mlp.fc1.weight, blocks3.1.mlp.fc1.bias, blocks3.1.mlp.fc2.weight, blocks3.1.mlp.fc2.bias, blocks3.2.pos_embed.weight, blocks3.2.pos_embed.bias, blocks3.2.norm1.weight, blocks3.2.norm1.bias, blocks3.2.attn.qkv.weight, blocks3.2.attn.qkv.bias, blocks3.2.attn.proj.weight, blocks3.2.attn.proj.bias, blocks3.2.norm2.weight, blocks3.2.norm2.bias, blocks3.2.mlp.fc1.weight, blocks3.2.mlp.fc1.bias, blocks3.2.mlp.fc2.weight, blocks3.2.mlp.fc2.bias, blocks3.3.pos_embed.weight, blocks3.3.pos_embed.bias, blocks3.3.norm1.weight, blocks3.3.norm1.bias, blocks3.3.attn.qkv.weight, blocks3.3.attn.qkv.bias, blocks3.3.attn.proj.weight, blocks3.3.attn.proj.bias, blocks3.3.norm2.weight, blocks3.3.norm2.bias, blocks3.3.mlp.fc1.weight, blocks3.3.mlp.fc1.bias, blocks3.3.mlp.fc2.weight, blocks3.3.mlp.fc2.bias, blocks3.4.pos_embed.weight, blocks3.4.pos_embed.bias, blocks3.4.norm1.weight, blocks3.4.norm1.bias, blocks3.4.attn.qkv.weight, blocks3.4.attn.qkv.bias, blocks3.4.attn.proj.weight, blocks3.4.attn.proj.bias, blocks3.4.norm2.weight, blocks3.4.norm2.bias, blocks3.4.mlp.fc1.weight, blocks3.4.mlp.fc1.bias, blocks3.4.mlp.fc2.weight, blocks3.4.mlp.fc2.bias, blocks3.5.pos_embed.weight, blocks3.5.pos_embed.bias, blocks3.5.norm1.weight, blocks3.5.norm1.bias, blocks3.5.attn.qkv.weight, blocks3.5.attn.qkv.bias, blocks3.5.attn.proj.weight, blocks3.5.attn.proj.bias, blocks3.5.norm2.weight, blocks3.5.norm2.bias, blocks3.5.mlp.fc1.weight, blocks3.5.mlp.fc1.bias, blocks3.5.mlp.fc2.weight, blocks3.5.mlp.fc2.bias, blocks3.6.pos_embed.weight, blocks3.6.pos_embed.bias, blocks3.6.norm1.weight, blocks3.6.norm1.bias, blocks3.6.attn.qkv.weight, blocks3.6.attn.qkv.bias, blocks3.6.attn.proj.weight, blocks3.6.attn.proj.bias, blocks3.6.norm2.weight, blocks3.6.norm2.bias, blocks3.6.mlp.fc1.weight, blocks3.6.mlp.fc1.bias, blocks3.6.mlp.fc2.weight, blocks3.6.mlp.fc2.bias, blocks3.7.pos_embed.weight, blocks3.7.pos_embed.bias, blocks3.7.norm1.weight, blocks3.7.norm1.bias, blocks3.7.attn.qkv.weight, blocks3.7.attn.qkv.bias, blocks3.7.attn.proj.weight, blocks3.7.attn.proj.bias, blocks3.7.norm2.weight, blocks3.7.norm2.bias, blocks3.7.mlp.fc1.weight, blocks3.7.mlp.fc1.bias, blocks3.7.mlp.fc2.weight, blocks3.7.mlp.fc2.bias, norm3.weight, norm3.bias, blocks4.0.pos_embed.weight, blocks4.0.pos_embed.bias, blocks4.0.norm1.weight, blocks4.0.norm1.bias, blocks4.0.attn.qkv.weight, blocks4.0.attn.qkv.bias, blocks4.0.attn.proj.weight, blocks4.0.attn.proj.bias, blocks4.0.norm2.weight, blocks4.0.norm2.bias, blocks4.0.mlp.fc1.weight, blocks4.0.mlp.fc1.bias, blocks4.0.mlp.fc2.weight, blocks4.0.mlp.fc2.bias, blocks4.1.pos_embed.weight, blocks4.1.pos_embed.bias, blocks4.1.norm1.weight, blocks4.1.norm1.bias, blocks4.1.attn.qkv.weight, blocks4.1.attn.qkv.bias, blocks4.1.attn.proj.weight, blocks4.1.attn.proj.bias, blocks4.1.norm2.weight, blocks4.1.norm2.bias, blocks4.1.mlp.fc1.weight, blocks4.1.mlp.fc1.bias, blocks4.1.mlp.fc2.weight, blocks4.1.mlp.fc2.bias, blocks4.2.pos_embed.weight, blocks4.2.pos_embed.bias, blocks4.2.norm1.weight, blocks4.2.norm1.bias, blocks4.2.attn.qkv.weight, blocks4.2.attn.qkv.bias, blocks4.2.attn.proj.weight, blocks4.2.attn.proj.bias, blocks4.2.norm2.weight, blocks4.2.norm2.bias, blocks4.2.mlp.fc1.weight, blocks4.2.mlp.fc1.bias, blocks4.2.mlp.fc2.weight, blocks4.2.mlp.fc2.bias, norm4.weight, norm4.bias
07/24 14:04:56 - mmpose - INFO - Load pretrained model from /root/mmpose/projects/uniformer/pretrained/uniformer_small_in1k.pth
07/24 14:05:00 - mmengine - INFO - Distributed training is not used, all SyncBatchNorm (SyncBN) layers in the model will be automatically reverted to BatchNormXd layers if they are used.
07/24 14:05:00 - mmengine - INFO - Hooks will be executed in the following order:
before_run:
(VERY_HIGH ) RuntimeInfoHook
(BELOW_NORMAL) LoggerHook
--------------------
before_train:
(VERY_HIGH ) RuntimeInfoHook
(NORMAL ) IterTimerHook
(VERY_LOW ) CheckpointHook
--------------------
before_train_epoch:
(VERY_HIGH ) RuntimeInfoHook
(NORMAL ) IterTimerHook
(NORMAL ) DistSamplerSeedHook
--------------------
before_train_iter:
(VERY_HIGH ) RuntimeInfoHook
(NORMAL ) IterTimerHook
--------------------
after_train_iter:
(VERY_HIGH ) RuntimeInfoHook
(NORMAL ) IterTimerHook
(BELOW_NORMAL) LoggerHook
(LOW ) ParamSchedulerHook
(VERY_LOW ) CheckpointHook
--------------------
after_train_epoch:
(NORMAL ) IterTimerHook
(NORMAL ) SyncBuffersHook
(LOW ) ParamSchedulerHook
(VERY_LOW ) CheckpointHook
--------------------
before_val_epoch:
(NORMAL ) IterTimerHook
(NORMAL ) SyncBuffersHook
--------------------
before_val_iter:
(NORMAL ) IterTimerHook
--------------------
after_val_iter:
(NORMAL ) IterTimerHook
(NORMAL ) PoseVisualizationHook
(BELOW_NORMAL) LoggerHook
--------------------
after_val_epoch:
(VERY_HIGH ) RuntimeInfoHook
(NORMAL ) IterTimerHook
(BELOW_NORMAL) LoggerHook
(LOW ) ParamSchedulerHook
(VERY_LOW ) CheckpointHook
--------------------
after_train:
(VERY_LOW ) CheckpointHook
--------------------
before_test_epoch:
(NORMAL ) IterTimerHook
--------------------
before_test_iter:
(NORMAL ) IterTimerHook
--------------------
after_test_iter:
(NORMAL ) IterTimerHook
(NORMAL ) PoseVisualizationHook
(BELOW_NORMAL) LoggerHook
--------------------
after_test_epoch:
(VERY_HIGH ) RuntimeInfoHook
(NORMAL ) IterTimerHook
(BELOW_NORMAL) LoggerHook
--------------------
after_run:
(BELOW_NORMAL) LoggerHook
--------------------
loading annotations into memory...
Done (t=0.30s)
creating index...
index created!
loading annotations into memory...
Done (t=0.18s)
creating index...
index created!
Loads checkpoint by http backend from path: https://download.openmmlab.com/mmpose/v1/projects/uniformer/top_down_256x192_global_small-d4a7fdac_20230724.pth
Downloading: "https://download.openmmlab.com/mmpose/v1/projects/uniformer/top_down_256x192_global_small-d4a7fdac_20230724.pth" to /root/.cache/torch/hub/checkpoints/top_down_256x192_global_small-d4a7fdac_20230724.pth
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 96.3M/96.3M [00:05<00:00, 19.8MB/s]
07/24 14:05:14 - mmengine - INFO - Load checkpoint from https://download.openmmlab.com/mmpose/v1/projects/uniformer/top_down_256x192_global_small-d4a7fdac_20230724.pth
07/24 14:05:55 - mmengine - INFO - Epoch(test) [ 50/407] eta: 0:04:51 time: 0.815450 data_time: 0.149263 memory: 2966
07/24 14:06:37 - mmengine - INFO - Epoch(test) [100/407] eta: 0:04:12 time: 0.831289 data_time: 0.162858 memory: 2966
07/24 14:07:18 - mmengine - INFO - Epoch(test) [150/407] eta: 0:03:31 time: 0.826862 data_time: 0.153038 memory: 2966
07/24 14:08:00 - mmengine - INFO - Epoch(test) [200/407] eta: 0:02:51 time: 0.837929 data_time: 0.170698 memory: 2966
07/24 14:08:42 - mmengine - INFO - Epoch(test) [250/407] eta: 0:02:10 time: 0.841122 data_time: 0.165579 memory: 2966
07/24 14:09:23 - mmengine - INFO - Epoch(test) [300/407] eta: 0:01:28 time: 0.828984 data_time: 0.156390 memory: 2966
07/24 14:10:05 - mmengine - INFO - Epoch(test) [350/407] eta: 0:00:47 time: 0.838562 data_time: 0.169481 memory: 2966
07/24 14:10:47 - mmengine - INFO - Epoch(test) [400/407] eta: 0:00:05 time: 0.836921 data_time: 0.168182 memory: 2966
07/24 14:11:26 - mmengine - INFO - Evaluating CocoMetric...
Loading and preparing results...
DONE (t=3.31s)
creating index...
index created!
Running per image evaluation...
Evaluate annotation type *keypoints*
DONE (t=9.63s).
Accumulating evaluation results...
DONE (t=0.31s).
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets= 20 ] = 0.740
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets= 20 ] = 0.903
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets= 20 ] = 0.821
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets= 20 ] = 0.705
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets= 20 ] = 0.809
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 20 ] = 0.795
Average Recall (AR) @[ IoU=0.50 | area= all | maxDets= 20 ] = 0.941
Average Recall (AR) @[ IoU=0.75 | area= all | maxDets= 20 ] = 0.866
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets= 20 ] = 0.754
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets= 20 ] = 0.855
07/24 14:11:40 - mmengine - INFO - Epoch(test) [407/407] coco/AP: 0.740478 coco/AP .5: 0.902957 coco/AP .75: 0.821051 coco/AP (M): 0.704838 coco/AP (L): 0.808673 coco/AR: 0.794773 coco/AR .5: 0.941436 coco/AR .75: 0.866026 coco/AR (M): 0.753510 coco/AR (L): 0.855035 data_time: 0.161404 time: 0.831106 whereas the accuracy listed in the official UniFormer repo is:
|
Testing result on 07/24 14:29:21 - mmpose - INFO - Use torch.utils.checkpoint: False
07/24 14:29:21 - mmpose - INFO - torch.utils.checkpoint number: (0, 0, 0, 0)
07/24 14:29:21 - mmpose - INFO - Use global window for all blocks in stage3
07/24 14:29:22 - mmpose - INFO - Loads checkpoint by local backend from path: /root/mmpose/projects/uniformer/pretrained/uniformer_base_in1k.pth
07/24 14:29:22 - mmpose - WARNING - The model and loaded state dict do not match exactly
unexpected key in source state_dict: model
missing keys in source state_dict: patch_embed1.norm.weight, patch_embed1.norm.bias, patch_embed1.proj.weight, patch_embed1.proj.bias, patch_embed2.norm.weight, patch_embed2.norm.bias, patch_embed2.proj.weight, patch_embed2.proj.bias, patch_embed3.norm.weight, patch_embed3.norm.bias, patch_embed3.proj.weight, patch_embed3.proj.bias, patch_embed4.norm.weight, patch_embed4.norm.bias, patch_embed4.proj.weight, patch_embed4.proj.bias, blocks1.0.pos_embed.weight, blocks1.0.pos_embed.bias, blocks1.0.norm1.weight, blocks1.0.norm1.bias, blocks1.0.norm1.running_mean, blocks1.0.norm1.running_var, blocks1.0.conv1.weight, blocks1.0.conv1.bias, blocks1.0.conv2.weight, blocks1.0.conv2.bias, blocks1.0.attn.weight, blocks1.0.attn.bias, blocks1.0.norm2.weight, blocks1.0.norm2.bias, blocks1.0.norm2.running_mean, blocks1.0.norm2.running_var, blocks1.0.mlp.fc1.weight, blocks1.0.mlp.fc1.bias, blocks1.0.mlp.fc2.weight, blocks1.0.mlp.fc2.bias, blocks1.1.pos_embed.weight, blocks1.1.pos_embed.bias, blocks1.1.norm1.weight, blocks1.1.norm1.bias, blocks1.1.norm1.running_mean, blocks1.1.norm1.running_var, blocks1.1.conv1.weight, blocks1.1.conv1.bias, blocks1.1.conv2.weight, blocks1.1.conv2.bias, blocks1.1.attn.weight, blocks1.1.attn.bias, blocks1.1.norm2.weight, blocks1.1.norm2.bias, blocks1.1.norm2.running_mean, blocks1.1.norm2.running_var, blocks1.1.mlp.fc1.weight, blocks1.1.mlp.fc1.bias, blocks1.1.mlp.fc2.weight, blocks1.1.mlp.fc2.bias, blocks1.2.pos_embed.weight, blocks1.2.pos_embed.bias, blocks1.2.norm1.weight, blocks1.2.norm1.bias, blocks1.2.norm1.running_mean, blocks1.2.norm1.running_var, blocks1.2.conv1.weight, blocks1.2.conv1.bias, blocks1.2.conv2.weight, blocks1.2.conv2.bias, blocks1.2.attn.weight, blocks1.2.attn.bias, blocks1.2.norm2.weight, blocks1.2.norm2.bias, blocks1.2.norm2.running_mean, blocks1.2.norm2.running_var, blocks1.2.mlp.fc1.weight, blocks1.2.mlp.fc1.bias, blocks1.2.mlp.fc2.weight, blocks1.2.mlp.fc2.bias, blocks1.3.pos_embed.weight, blocks1.3.pos_embed.bias, blocks1.3.norm1.weight, blocks1.3.norm1.bias, blocks1.3.norm1.running_mean, blocks1.3.norm1.running_var, blocks1.3.conv1.weight, blocks1.3.conv1.bias, blocks1.3.conv2.weight, blocks1.3.conv2.bias, blocks1.3.attn.weight, blocks1.3.attn.bias, blocks1.3.norm2.weight, blocks1.3.norm2.bias, blocks1.3.norm2.running_mean, blocks1.3.norm2.running_var, blocks1.3.mlp.fc1.weight, blocks1.3.mlp.fc1.bias, blocks1.3.mlp.fc2.weight, blocks1.3.mlp.fc2.bias, blocks1.4.pos_embed.weight, blocks1.4.pos_embed.bias, blocks1.4.norm1.weight, blocks1.4.norm1.bias, blocks1.4.norm1.running_mean, blocks1.4.norm1.running_var, blocks1.4.conv1.weight, blocks1.4.conv1.bias, blocks1.4.conv2.weight, blocks1.4.conv2.bias, blocks1.4.attn.weight, blocks1.4.attn.bias, blocks1.4.norm2.weight, blocks1.4.norm2.bias, blocks1.4.norm2.running_mean, blocks1.4.norm2.running_var, blocks1.4.mlp.fc1.weight, blocks1.4.mlp.fc1.bias, blocks1.4.mlp.fc2.weight, blocks1.4.mlp.fc2.bias, norm1.weight, norm1.bias, blocks2.0.pos_embed.weight, blocks2.0.pos_embed.bias, blocks2.0.norm1.weight, blocks2.0.norm1.bias, blocks2.0.norm1.running_mean, blocks2.0.norm1.running_var, blocks2.0.conv1.weight, blocks2.0.conv1.bias, blocks2.0.conv2.weight, blocks2.0.conv2.bias, blocks2.0.attn.weight, blocks2.0.attn.bias, blocks2.0.norm2.weight, blocks2.0.norm2.bias, blocks2.0.norm2.running_mean, blocks2.0.norm2.running_var, blocks2.0.mlp.fc1.weight, blocks2.0.mlp.fc1.bias, blocks2.0.mlp.fc2.weight, blocks2.0.mlp.fc2.bias, blocks2.1.pos_embed.weight, blocks2.1.pos_embed.bias, blocks2.1.norm1.weight, blocks2.1.norm1.bias, blocks2.1.norm1.running_mean, blocks2.1.norm1.running_var, blocks2.1.conv1.weight, blocks2.1.conv1.bias, blocks2.1.conv2.weight, blocks2.1.conv2.bias, blocks2.1.attn.weight, blocks2.1.attn.bias, blocks2.1.norm2.weight, blocks2.1.norm2.bias, blocks2.1.norm2.running_mean, blocks2.1.norm2.running_var, blocks2.1.mlp.fc1.weight, blocks2.1.mlp.fc1.bias, blocks2.1.mlp.fc2.weight, blocks2.1.mlp.fc2.bias, blocks2.2.pos_embed.weight, blocks2.2.pos_embed.bias, blocks2.2.norm1.weight, blocks2.2.norm1.bias, blocks2.2.norm1.running_mean, blocks2.2.norm1.running_var, blocks2.2.conv1.weight, blocks2.2.conv1.bias, blocks2.2.conv2.weight, blocks2.2.conv2.bias, blocks2.2.attn.weight, blocks2.2.attn.bias, blocks2.2.norm2.weight, blocks2.2.norm2.bias, blocks2.2.norm2.running_mean, blocks2.2.norm2.running_var, blocks2.2.mlp.fc1.weight, blocks2.2.mlp.fc1.bias, blocks2.2.mlp.fc2.weight, blocks2.2.mlp.fc2.bias, blocks2.3.pos_embed.weight, blocks2.3.pos_embed.bias, blocks2.3.norm1.weight, blocks2.3.norm1.bias, blocks2.3.norm1.running_mean, blocks2.3.norm1.running_var, blocks2.3.conv1.weight, blocks2.3.conv1.bias, blocks2.3.conv2.weight, blocks2.3.conv2.bias, blocks2.3.attn.weight, blocks2.3.attn.bias, blocks2.3.norm2.weight, blocks2.3.norm2.bias, blocks2.3.norm2.running_mean, blocks2.3.norm2.running_var, blocks2.3.mlp.fc1.weight, blocks2.3.mlp.fc1.bias, blocks2.3.mlp.fc2.weight, blocks2.3.mlp.fc2.bias, blocks2.4.pos_embed.weight, blocks2.4.pos_embed.bias, blocks2.4.norm1.weight, blocks2.4.norm1.bias, blocks2.4.norm1.running_mean, blocks2.4.norm1.running_var, blocks2.4.conv1.weight, blocks2.4.conv1.bias, blocks2.4.conv2.weight, blocks2.4.conv2.bias, blocks2.4.attn.weight, blocks2.4.attn.bias, blocks2.4.norm2.weight, blocks2.4.norm2.bias, blocks2.4.norm2.running_mean, blocks2.4.norm2.running_var, blocks2.4.mlp.fc1.weight, blocks2.4.mlp.fc1.bias, blocks2.4.mlp.fc2.weight, blocks2.4.mlp.fc2.bias, blocks2.5.pos_embed.weight, blocks2.5.pos_embed.bias, blocks2.5.norm1.weight, blocks2.5.norm1.bias, blocks2.5.norm1.running_mean, blocks2.5.norm1.running_var, blocks2.5.conv1.weight, blocks2.5.conv1.bias, blocks2.5.conv2.weight, blocks2.5.conv2.bias, blocks2.5.attn.weight, blocks2.5.attn.bias, blocks2.5.norm2.weight, blocks2.5.norm2.bias, blocks2.5.norm2.running_mean, blocks2.5.norm2.running_var, blocks2.5.mlp.fc1.weight, blocks2.5.mlp.fc1.bias, blocks2.5.mlp.fc2.weight, blocks2.5.mlp.fc2.bias, blocks2.6.pos_embed.weight, blocks2.6.pos_embed.bias, blocks2.6.norm1.weight, blocks2.6.norm1.bias, blocks2.6.norm1.running_mean, blocks2.6.norm1.running_var, blocks2.6.conv1.weight, blocks2.6.conv1.bias, blocks2.6.conv2.weight, blocks2.6.conv2.bias, blocks2.6.attn.weight, blocks2.6.attn.bias, blocks2.6.norm2.weight, blocks2.6.norm2.bias, blocks2.6.norm2.running_mean, blocks2.6.norm2.running_var, blocks2.6.mlp.fc1.weight, blocks2.6.mlp.fc1.bias, blocks2.6.mlp.fc2.weight, blocks2.6.mlp.fc2.bias, blocks2.7.pos_embed.weight, blocks2.7.pos_embed.bias, blocks2.7.norm1.weight, blocks2.7.norm1.bias, blocks2.7.norm1.running_mean, blocks2.7.norm1.running_var, blocks2.7.conv1.weight, blocks2.7.conv1.bias, blocks2.7.conv2.weight, blocks2.7.conv2.bias, blocks2.7.attn.weight, blocks2.7.attn.bias, blocks2.7.norm2.weight, blocks2.7.norm2.bias, blocks2.7.norm2.running_mean, blocks2.7.norm2.running_var, blocks2.7.mlp.fc1.weight, blocks2.7.mlp.fc1.bias, blocks2.7.mlp.fc2.weight, blocks2.7.mlp.fc2.bias, norm2.weight, norm2.bias, blocks3.0.pos_embed.weight, blocks3.0.pos_embed.bias, blocks3.0.norm1.weight, blocks3.0.norm1.bias, blocks3.0.attn.qkv.weight, blocks3.0.attn.qkv.bias, blocks3.0.attn.proj.weight, blocks3.0.attn.proj.bias, blocks3.0.norm2.weight, blocks3.0.norm2.bias, blocks3.0.mlp.fc1.weight, blocks3.0.mlp.fc1.bias, blocks3.0.mlp.fc2.weight, blocks3.0.mlp.fc2.bias, blocks3.1.pos_embed.weight, blocks3.1.pos_embed.bias, blocks3.1.norm1.weight, blocks3.1.norm1.bias, blocks3.1.attn.qkv.weight, blocks3.1.attn.qkv.bias, blocks3.1.attn.proj.weight, blocks3.1.attn.proj.bias, blocks3.1.norm2.weight, blocks3.1.norm2.bias, blocks3.1.mlp.fc1.weight, blocks3.1.mlp.fc1.bias, blocks3.1.mlp.fc2.weight, blocks3.1.mlp.fc2.bias, blocks3.2.pos_embed.weight, blocks3.2.pos_embed.bias, blocks3.2.norm1.weight, blocks3.2.norm1.bias, blocks3.2.attn.qkv.weight, blocks3.2.attn.qkv.bias, blocks3.2.attn.proj.weight, blocks3.2.attn.proj.bias, blocks3.2.norm2.weight, blocks3.2.norm2.bias, blocks3.2.mlp.fc1.weight, blocks3.2.mlp.fc1.bias, blocks3.2.mlp.fc2.weight, blocks3.2.mlp.fc2.bias, blocks3.3.pos_embed.weight, blocks3.3.pos_embed.bias, blocks3.3.norm1.weight, blocks3.3.norm1.bias, blocks3.3.attn.qkv.weight, blocks3.3.attn.qkv.bias, blocks3.3.attn.proj.weight, blocks3.3.attn.proj.bias, blocks3.3.norm2.weight, blocks3.3.norm2.bias, blocks3.3.mlp.fc1.weight, blocks3.3.mlp.fc1.bias, blocks3.3.mlp.fc2.weight, blocks3.3.mlp.fc2.bias, blocks3.4.pos_embed.weight, blocks3.4.pos_embed.bias, blocks3.4.norm1.weight, blocks3.4.norm1.bias, blocks3.4.attn.qkv.weight, blocks3.4.attn.qkv.bias, blocks3.4.attn.proj.weight, blocks3.4.attn.proj.bias, blocks3.4.norm2.weight, blocks3.4.norm2.bias, blocks3.4.mlp.fc1.weight, blocks3.4.mlp.fc1.bias, blocks3.4.mlp.fc2.weight, blocks3.4.mlp.fc2.bias, blocks3.5.pos_embed.weight, blocks3.5.pos_embed.bias, blocks3.5.norm1.weight, blocks3.5.norm1.bias, blocks3.5.attn.qkv.weight, blocks3.5.attn.qkv.bias, blocks3.5.attn.proj.weight, blocks3.5.attn.proj.bias, blocks3.5.norm2.weight, blocks3.5.norm2.bias, blocks3.5.mlp.fc1.weight, blocks3.5.mlp.fc1.bias, blocks3.5.mlp.fc2.weight, blocks3.5.mlp.fc2.bias, blocks3.6.pos_embed.weight, blocks3.6.pos_embed.bias, blocks3.6.norm1.weight, blocks3.6.norm1.bias, blocks3.6.attn.qkv.weight, blocks3.6.attn.qkv.bias, blocks3.6.attn.proj.weight, blocks3.6.attn.proj.bias, blocks3.6.norm2.weight, blocks3.6.norm2.bias, blocks3.6.mlp.fc1.weight, blocks3.6.mlp.fc1.bias, blocks3.6.mlp.fc2.weight, blocks3.6.mlp.fc2.bias, blocks3.7.pos_embed.weight, blocks3.7.pos_embed.bias, blocks3.7.norm1.weight, blocks3.7.norm1.bias, blocks3.7.attn.qkv.weight, blocks3.7.attn.qkv.bias, blocks3.7.attn.proj.weight, blocks3.7.attn.proj.bias, blocks3.7.norm2.weight, blocks3.7.norm2.bias, blocks3.7.mlp.fc1.weight, blocks3.7.mlp.fc1.bias, blocks3.7.mlp.fc2.weight, blocks3.7.mlp.fc2.bias, blocks3.8.pos_embed.weight, blocks3.8.pos_embed.bias, blocks3.8.norm1.weight, blocks3.8.norm1.bias, blocks3.8.attn.qkv.weight, blocks3.8.attn.qkv.bias, blocks3.8.attn.proj.weight, blocks3.8.attn.proj.bias, blocks3.8.norm2.weight, blocks3.8.norm2.bias, blocks3.8.mlp.fc1.weight, blocks3.8.mlp.fc1.bias, blocks3.8.mlp.fc2.weight, blocks3.8.mlp.fc2.bias, blocks3.9.pos_embed.weight, blocks3.9.pos_embed.bias, blocks3.9.norm1.weight, blocks3.9.norm1.bias, blocks3.9.attn.qkv.weight, blocks3.9.attn.qkv.bias, blocks3.9.attn.proj.weight, blocks3.9.attn.proj.bias, blocks3.9.norm2.weight, blocks3.9.norm2.bias, blocks3.9.mlp.fc1.weight, blocks3.9.mlp.fc1.bias, blocks3.9.mlp.fc2.weight, blocks3.9.mlp.fc2.bias, blocks3.10.pos_embed.weight, blocks3.10.pos_embed.bias, blocks3.10.norm1.weight, blocks3.10.norm1.bias, blocks3.10.attn.qkv.weight, blocks3.10.attn.qkv.bias, blocks3.10.attn.proj.weight, blocks3.10.attn.proj.bias, blocks3.10.norm2.weight, blocks3.10.norm2.bias, blocks3.10.mlp.fc1.weight, blocks3.10.mlp.fc1.bias, blocks3.10.mlp.fc2.weight, blocks3.10.mlp.fc2.bias, blocks3.11.pos_embed.weight, blocks3.11.pos_embed.bias, blocks3.11.norm1.weight, blocks3.11.norm1.bias, blocks3.11.attn.qkv.weight, blocks3.11.attn.qkv.bias, blocks3.11.attn.proj.weight, blocks3.11.attn.proj.bias, blocks3.11.norm2.weight, blocks3.11.norm2.bias, blocks3.11.mlp.fc1.weight, blocks3.11.mlp.fc1.bias, blocks3.11.mlp.fc2.weight, blocks3.11.mlp.fc2.bias, blocks3.12.pos_embed.weight, blocks3.12.pos_embed.bias, blocks3.12.norm1.weight, blocks3.12.norm1.bias, blocks3.12.attn.qkv.weight, blocks3.12.attn.qkv.bias, blocks3.12.attn.proj.weight, blocks3.12.attn.proj.bias, blocks3.12.norm2.weight, blocks3.12.norm2.bias, blocks3.12.mlp.fc1.weight, blocks3.12.mlp.fc1.bias, blocks3.12.mlp.fc2.weight, blocks3.12.mlp.fc2.bias, blocks3.13.pos_embed.weight, blocks3.13.pos_embed.bias, blocks3.13.norm1.weight, blocks3.13.norm1.bias, blocks3.13.attn.qkv.weight, blocks3.13.attn.qkv.bias, blocks3.13.attn.proj.weight, blocks3.13.attn.proj.bias, blocks3.13.norm2.weight, blocks3.13.norm2.bias, blocks3.13.mlp.fc1.weight, blocks3.13.mlp.fc1.bias, blocks3.13.mlp.fc2.weight, blocks3.13.mlp.fc2.bias, blocks3.14.pos_embed.weight, blocks3.14.pos_embed.bias, blocks3.14.norm1.weight, blocks3.14.norm1.bias, blocks3.14.attn.qkv.weight, blocks3.14.attn.qkv.bias, blocks3.14.attn.proj.weight, blocks3.14.attn.proj.bias, blocks3.14.norm2.weight, blocks3.14.norm2.bias, blocks3.14.mlp.fc1.weight, blocks3.14.mlp.fc1.bias, blocks3.14.mlp.fc2.weight, blocks3.14.mlp.fc2.bias, blocks3.15.pos_embed.weight, blocks3.15.pos_embed.bias, blocks3.15.norm1.weight, blocks3.15.norm1.bias, blocks3.15.attn.qkv.weight, blocks3.15.attn.qkv.bias, blocks3.15.attn.proj.weight, blocks3.15.attn.proj.bias, blocks3.15.norm2.weight, blocks3.15.norm2.bias, blocks3.15.mlp.fc1.weight, blocks3.15.mlp.fc1.bias, blocks3.15.mlp.fc2.weight, blocks3.15.mlp.fc2.bias, blocks3.16.pos_embed.weight, blocks3.16.pos_embed.bias, blocks3.16.norm1.weight, blocks3.16.norm1.bias, blocks3.16.attn.qkv.weight, blocks3.16.attn.qkv.bias, blocks3.16.attn.proj.weight, blocks3.16.attn.proj.bias, blocks3.16.norm2.weight, blocks3.16.norm2.bias, blocks3.16.mlp.fc1.weight, blocks3.16.mlp.fc1.bias, blocks3.16.mlp.fc2.weight, blocks3.16.mlp.fc2.bias, blocks3.17.pos_embed.weight, blocks3.17.pos_embed.bias, blocks3.17.norm1.weight, blocks3.17.norm1.bias, blocks3.17.attn.qkv.weight, blocks3.17.attn.qkv.bias, blocks3.17.attn.proj.weight, blocks3.17.attn.proj.bias, blocks3.17.norm2.weight, blocks3.17.norm2.bias, blocks3.17.mlp.fc1.weight, blocks3.17.mlp.fc1.bias, blocks3.17.mlp.fc2.weight, blocks3.17.mlp.fc2.bias, blocks3.18.pos_embed.weight, blocks3.18.pos_embed.bias, blocks3.18.norm1.weight, blocks3.18.norm1.bias, blocks3.18.attn.qkv.weight, blocks3.18.attn.qkv.bias, blocks3.18.attn.proj.weight, blocks3.18.attn.proj.bias, blocks3.18.norm2.weight, blocks3.18.norm2.bias, blocks3.18.mlp.fc1.weight, blocks3.18.mlp.fc1.bias, blocks3.18.mlp.fc2.weight, blocks3.18.mlp.fc2.bias, blocks3.19.pos_embed.weight, blocks3.19.pos_embed.bias, blocks3.19.norm1.weight, blocks3.19.norm1.bias, blocks3.19.attn.qkv.weight, blocks3.19.attn.qkv.bias, blocks3.19.attn.proj.weight, blocks3.19.attn.proj.bias, blocks3.19.norm2.weight, blocks3.19.norm2.bias, blocks3.19.mlp.fc1.weight, blocks3.19.mlp.fc1.bias, blocks3.19.mlp.fc2.weight, blocks3.19.mlp.fc2.bias, norm3.weight, norm3.bias, blocks4.0.pos_embed.weight, blocks4.0.pos_embed.bias, blocks4.0.norm1.weight, blocks4.0.norm1.bias, blocks4.0.attn.qkv.weight, blocks4.0.attn.qkv.bias, blocks4.0.attn.proj.weight, blocks4.0.attn.proj.bias, blocks4.0.norm2.weight, blocks4.0.norm2.bias, blocks4.0.mlp.fc1.weight, blocks4.0.mlp.fc1.bias, blocks4.0.mlp.fc2.weight, blocks4.0.mlp.fc2.bias, blocks4.1.pos_embed.weight, blocks4.1.pos_embed.bias, blocks4.1.norm1.weight, blocks4.1.norm1.bias, blocks4.1.attn.qkv.weight, blocks4.1.attn.qkv.bias, blocks4.1.attn.proj.weight, blocks4.1.attn.proj.bias, blocks4.1.norm2.weight, blocks4.1.norm2.bias, blocks4.1.mlp.fc1.weight, blocks4.1.mlp.fc1.bias, blocks4.1.mlp.fc2.weight, blocks4.1.mlp.fc2.bias, blocks4.2.pos_embed.weight, blocks4.2.pos_embed.bias, blocks4.2.norm1.weight, blocks4.2.norm1.bias, blocks4.2.attn.qkv.weight, blocks4.2.attn.qkv.bias, blocks4.2.attn.proj.weight, blocks4.2.attn.proj.bias, blocks4.2.norm2.weight, blocks4.2.norm2.bias, blocks4.2.mlp.fc1.weight, blocks4.2.mlp.fc1.bias, blocks4.2.mlp.fc2.weight, blocks4.2.mlp.fc2.bias, blocks4.3.pos_embed.weight, blocks4.3.pos_embed.bias, blocks4.3.norm1.weight, blocks4.3.norm1.bias, blocks4.3.attn.qkv.weight, blocks4.3.attn.qkv.bias, blocks4.3.attn.proj.weight, blocks4.3.attn.proj.bias, blocks4.3.norm2.weight, blocks4.3.norm2.bias, blocks4.3.mlp.fc1.weight, blocks4.3.mlp.fc1.bias, blocks4.3.mlp.fc2.weight, blocks4.3.mlp.fc2.bias, blocks4.4.pos_embed.weight, blocks4.4.pos_embed.bias, blocks4.4.norm1.weight, blocks4.4.norm1.bias, blocks4.4.attn.qkv.weight, blocks4.4.attn.qkv.bias, blocks4.4.attn.proj.weight, blocks4.4.attn.proj.bias, blocks4.4.norm2.weight, blocks4.4.norm2.bias, blocks4.4.mlp.fc1.weight, blocks4.4.mlp.fc1.bias, blocks4.4.mlp.fc2.weight, blocks4.4.mlp.fc2.bias, blocks4.5.pos_embed.weight, blocks4.5.pos_embed.bias, blocks4.5.norm1.weight, blocks4.5.norm1.bias, blocks4.5.attn.qkv.weight, blocks4.5.attn.qkv.bias, blocks4.5.attn.proj.weight, blocks4.5.attn.proj.bias, blocks4.5.norm2.weight, blocks4.5.norm2.bias, blocks4.5.mlp.fc1.weight, blocks4.5.mlp.fc1.bias, blocks4.5.mlp.fc2.weight, blocks4.5.mlp.fc2.bias, blocks4.6.pos_embed.weight, blocks4.6.pos_embed.bias, blocks4.6.norm1.weight, blocks4.6.norm1.bias, blocks4.6.attn.qkv.weight, blocks4.6.attn.qkv.bias, blocks4.6.attn.proj.weight, blocks4.6.attn.proj.bias, blocks4.6.norm2.weight, blocks4.6.norm2.bias, blocks4.6.mlp.fc1.weight, blocks4.6.mlp.fc1.bias, blocks4.6.mlp.fc2.weight, blocks4.6.mlp.fc2.bias, norm4.weight, norm4.bias
07/24 14:29:22 - mmpose - INFO - Load pretrained model from /root/mmpose/projects/uniformer/pretrained/uniformer_base_in1k.pth
07/24 14:29:26 - mmengine - INFO - Distributed training is not used, all SyncBatchNorm (SyncBN) layers in the model will be automatically reverted to BatchNormXd layers if they are used.
07/24 14:29:26 - mmengine - INFO - Hooks will be executed in the following order:
before_run:
(VERY_HIGH ) RuntimeInfoHook
(BELOW_NORMAL) LoggerHook
--------------------
before_train:
(VERY_HIGH ) RuntimeInfoHook
(NORMAL ) IterTimerHook
(VERY_LOW ) CheckpointHook
--------------------
before_train_epoch:
(VERY_HIGH ) RuntimeInfoHook
(NORMAL ) IterTimerHook
(NORMAL ) DistSamplerSeedHook
--------------------
before_train_iter:
(VERY_HIGH ) RuntimeInfoHook
(NORMAL ) IterTimerHook
--------------------
after_train_iter:
(VERY_HIGH ) RuntimeInfoHook
(NORMAL ) IterTimerHook
(BELOW_NORMAL) LoggerHook
(LOW ) ParamSchedulerHook
(VERY_LOW ) CheckpointHook
--------------------
after_train_epoch:
(NORMAL ) IterTimerHook
(NORMAL ) SyncBuffersHook
(LOW ) ParamSchedulerHook
(VERY_LOW ) CheckpointHook
--------------------
before_val_epoch:
(NORMAL ) IterTimerHook
(NORMAL ) SyncBuffersHook
--------------------
before_val_iter:
(NORMAL ) IterTimerHook
--------------------
after_val_iter:
(NORMAL ) IterTimerHook
(NORMAL ) PoseVisualizationHook
(BELOW_NORMAL) LoggerHook
--------------------
after_val_epoch:
(VERY_HIGH ) RuntimeInfoHook
(NORMAL ) IterTimerHook
(BELOW_NORMAL) LoggerHook
(LOW ) ParamSchedulerHook
(VERY_LOW ) CheckpointHook
--------------------
after_train:
(VERY_LOW ) CheckpointHook
--------------------
before_test_epoch:
(NORMAL ) IterTimerHook
--------------------
before_test_iter:
(NORMAL ) IterTimerHook
--------------------
after_test_iter:
(NORMAL ) IterTimerHook
(NORMAL ) PoseVisualizationHook
(BELOW_NORMAL) LoggerHook
--------------------
after_test_epoch:
(VERY_HIGH ) RuntimeInfoHook
(NORMAL ) IterTimerHook
(BELOW_NORMAL) LoggerHook
--------------------
after_run:
(BELOW_NORMAL) LoggerHook
--------------------
loading annotations into memory...
Done (t=0.30s)
creating index...
index created!
loading annotations into memory...
Done (t=0.19s)
creating index...
index created!
Loads checkpoint by http backend from path: https://download.openmmlab.com/mmpose/v1/projects/uniformer/top_down_256x192_global_base-1713bcd4_20230724.pth
Downloading: "https://download.openmmlab.com/mmpose/v1/projects/uniformer/top_down_256x192_global_base-1713bcd4_20230724.pth" to /root/.cache/torch/hub/checkpoints/top_down_256x192_global_base-1713bcd4_20230724.pth
100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 204M/204M [00:10<00:00, 20.9MB/s]
07/24 14:29:45 - mmengine - INFO - Load checkpoint from https://download.openmmlab.com/mmpose/v1/projects/uniformer/top_down_256x192_global_base-1713bcd4_20230724.pth
07/24 14:30:50 - mmengine - INFO - Epoch(test) [ 50/407] eta: 0:07:43 time: 1.299552 data_time: 0.199893 memory: 3075
07/24 14:31:54 - mmengine - INFO - Epoch(test) [100/407] eta: 0:06:36 time: 1.280605 data_time: 0.170661 memory: 3075
07/24 14:32:58 - mmengine - INFO - Epoch(test) [150/407] eta: 0:05:29 time: 1.268949 data_time: 0.157379 memory: 3075
07/24 14:34:02 - mmengine - INFO - Epoch(test) [200/407] eta: 0:04:25 time: 1.280099 data_time: 0.168987 memory: 3075
07/24 14:35:06 - mmengine - INFO - Epoch(test) [250/407] eta: 0:03:21 time: 1.290992 data_time: 0.181665 memory: 3075
07/24 14:36:10 - mmengine - INFO - Epoch(test) [300/407] eta: 0:02:17 time: 1.279991 data_time: 0.171667 memory: 3075
07/24 14:37:14 - mmengine - INFO - Epoch(test) [350/407] eta: 0:01:13 time: 1.278610 data_time: 0.166956 memory: 3075
07/24 14:38:18 - mmengine - INFO - Epoch(test) [400/407] eta: 0:00:08 time: 1.275209 data_time: 0.164871 memory: 3075
07/24 14:38:59 - mmengine - INFO - Evaluating CocoMetric...
Loading and preparing results...
DONE (t=3.18s)
creating index...
index created!
Running per image evaluation...
Evaluate annotation type *keypoints*
DONE (t=9.17s).
Accumulating evaluation results...
DONE (t=0.31s).
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets= 20 ] = 0.750
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets= 20 ] = 0.905
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets= 20 ] = 0.829
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets= 20 ] = 0.715
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets= 20 ] = 0.818
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 20 ] = 0.804
Average Recall (AR) @[ IoU=0.50 | area= all | maxDets= 20 ] = 0.943
Average Recall (AR) @[ IoU=0.75 | area= all | maxDets= 20 ] = 0.872
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets= 20 ] = 0.762
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets= 20 ] = 0.864
07/24 14:39:12 - mmengine - INFO - Epoch(test) [407/407] coco/AP: 0.749641 coco/AP .5: 0.905371 coco/AP .75: 0.828859 coco/AP (M): 0.714766 coco/AP (L): 0.817848 coco/AR: 0.803526 coco/AR .5: 0.942538 coco/AR .75: 0.871851 coco/AR (M): 0.761950 coco/AR (L): 0.863768 data_time: 0.172043 time: 1.280725 whereas the accuracy listed in the official UniFormer repo is:
|
Testing result on 07/24 14:42:05 - mmpose - INFO - Use torch.utils.checkpoint: False
07/24 14:42:05 - mmpose - INFO - torch.utils.checkpoint number: (0, 0, 0, 0)
07/24 14:42:05 - mmpose - INFO - Use global window for all blocks in stage3
07/24 14:42:06 - mmpose - INFO - Loads checkpoint by local backend from path: /root/mmpose/projects/uniformer/pretrained/uniformer_base_in1k.pth
07/24 14:42:06 - mmpose - WARNING - The model and loaded state dict do not match exactly
unexpected key in source state_dict: model
missing keys in source state_dict: patch_embed1.norm.weight, patch_embed1.norm.bias, patch_embed1.proj.weight, patch_embed1.proj.bias, patch_embed2.norm.weight, patch_embed2.norm.bias, patch_embed2.proj.weight, patch_embed2.proj.bias, patch_embed3.norm.weight, patch_embed3.norm.bias, patch_embed3.proj.weight, patch_embed3.proj.bias, patch_embed4.norm.weight, patch_embed4.norm.bias, patch_embed4.proj.weight, patch_embed4.proj.bias, blocks1.0.pos_embed.weight, blocks1.0.pos_embed.bias, blocks1.0.norm1.weight, blocks1.0.norm1.bias, blocks1.0.norm1.running_mean, blocks1.0.norm1.running_var, blocks1.0.conv1.weight, blocks1.0.conv1.bias, blocks1.0.conv2.weight, blocks1.0.conv2.bias, blocks1.0.attn.weight, blocks1.0.attn.bias, blocks1.0.norm2.weight, blocks1.0.norm2.bias, blocks1.0.norm2.running_mean, blocks1.0.norm2.running_var, blocks1.0.mlp.fc1.weight, blocks1.0.mlp.fc1.bias, blocks1.0.mlp.fc2.weight, blocks1.0.mlp.fc2.bias, blocks1.1.pos_embed.weight, blocks1.1.pos_embed.bias, blocks1.1.norm1.weight, blocks1.1.norm1.bias, blocks1.1.norm1.running_mean, blocks1.1.norm1.running_var, blocks1.1.conv1.weight, blocks1.1.conv1.bias, blocks1.1.conv2.weight, blocks1.1.conv2.bias, blocks1.1.attn.weight, blocks1.1.attn.bias, blocks1.1.norm2.weight, blocks1.1.norm2.bias, blocks1.1.norm2.running_mean, blocks1.1.norm2.running_var, blocks1.1.mlp.fc1.weight, blocks1.1.mlp.fc1.bias, blocks1.1.mlp.fc2.weight, blocks1.1.mlp.fc2.bias, blocks1.2.pos_embed.weight, blocks1.2.pos_embed.bias, blocks1.2.norm1.weight, blocks1.2.norm1.bias, blocks1.2.norm1.running_mean, blocks1.2.norm1.running_var, blocks1.2.conv1.weight, blocks1.2.conv1.bias, blocks1.2.conv2.weight, blocks1.2.conv2.bias, blocks1.2.attn.weight, blocks1.2.attn.bias, blocks1.2.norm2.weight, blocks1.2.norm2.bias, blocks1.2.norm2.running_mean, blocks1.2.norm2.running_var, blocks1.2.mlp.fc1.weight, blocks1.2.mlp.fc1.bias, blocks1.2.mlp.fc2.weight, blocks1.2.mlp.fc2.bias, blocks1.3.pos_embed.weight, blocks1.3.pos_embed.bias, blocks1.3.norm1.weight, blocks1.3.norm1.bias, blocks1.3.norm1.running_mean, blocks1.3.norm1.running_var, blocks1.3.conv1.weight, blocks1.3.conv1.bias, blocks1.3.conv2.weight, blocks1.3.conv2.bias, blocks1.3.attn.weight, blocks1.3.attn.bias, blocks1.3.norm2.weight, blocks1.3.norm2.bias, blocks1.3.norm2.running_mean, blocks1.3.norm2.running_var, blocks1.3.mlp.fc1.weight, blocks1.3.mlp.fc1.bias, blocks1.3.mlp.fc2.weight, blocks1.3.mlp.fc2.bias, blocks1.4.pos_embed.weight, blocks1.4.pos_embed.bias, blocks1.4.norm1.weight, blocks1.4.norm1.bias, blocks1.4.norm1.running_mean, blocks1.4.norm1.running_var, blocks1.4.conv1.weight, blocks1.4.conv1.bias, blocks1.4.conv2.weight, blocks1.4.conv2.bias, blocks1.4.attn.weight, blocks1.4.attn.bias, blocks1.4.norm2.weight, blocks1.4.norm2.bias, blocks1.4.norm2.running_mean, blocks1.4.norm2.running_var, blocks1.4.mlp.fc1.weight, blocks1.4.mlp.fc1.bias, blocks1.4.mlp.fc2.weight, blocks1.4.mlp.fc2.bias, norm1.weight, norm1.bias, blocks2.0.pos_embed.weight, blocks2.0.pos_embed.bias, blocks2.0.norm1.weight, blocks2.0.norm1.bias, blocks2.0.norm1.running_mean, blocks2.0.norm1.running_var, blocks2.0.conv1.weight, blocks2.0.conv1.bias, blocks2.0.conv2.weight, blocks2.0.conv2.bias, blocks2.0.attn.weight, blocks2.0.attn.bias, blocks2.0.norm2.weight, blocks2.0.norm2.bias, blocks2.0.norm2.running_mean, blocks2.0.norm2.running_var, blocks2.0.mlp.fc1.weight, blocks2.0.mlp.fc1.bias, blocks2.0.mlp.fc2.weight, blocks2.0.mlp.fc2.bias, blocks2.1.pos_embed.weight, blocks2.1.pos_embed.bias, blocks2.1.norm1.weight, blocks2.1.norm1.bias, blocks2.1.norm1.running_mean, blocks2.1.norm1.running_var, blocks2.1.conv1.weight, blocks2.1.conv1.bias, blocks2.1.conv2.weight, blocks2.1.conv2.bias, blocks2.1.attn.weight, blocks2.1.attn.bias, blocks2.1.norm2.weight, blocks2.1.norm2.bias, blocks2.1.norm2.running_mean, blocks2.1.norm2.running_var, blocks2.1.mlp.fc1.weight, blocks2.1.mlp.fc1.bias, blocks2.1.mlp.fc2.weight, blocks2.1.mlp.fc2.bias, blocks2.2.pos_embed.weight, blocks2.2.pos_embed.bias, blocks2.2.norm1.weight, blocks2.2.norm1.bias, blocks2.2.norm1.running_mean, blocks2.2.norm1.running_var, blocks2.2.conv1.weight, blocks2.2.conv1.bias, blocks2.2.conv2.weight, blocks2.2.conv2.bias, blocks2.2.attn.weight, blocks2.2.attn.bias, blocks2.2.norm2.weight, blocks2.2.norm2.bias, blocks2.2.norm2.running_mean, blocks2.2.norm2.running_var, blocks2.2.mlp.fc1.weight, blocks2.2.mlp.fc1.bias, blocks2.2.mlp.fc2.weight, blocks2.2.mlp.fc2.bias, blocks2.3.pos_embed.weight, blocks2.3.pos_embed.bias, blocks2.3.norm1.weight, blocks2.3.norm1.bias, blocks2.3.norm1.running_mean, blocks2.3.norm1.running_var, blocks2.3.conv1.weight, blocks2.3.conv1.bias, blocks2.3.conv2.weight, blocks2.3.conv2.bias, blocks2.3.attn.weight, blocks2.3.attn.bias, blocks2.3.norm2.weight, blocks2.3.norm2.bias, blocks2.3.norm2.running_mean, blocks2.3.norm2.running_var, blocks2.3.mlp.fc1.weight, blocks2.3.mlp.fc1.bias, blocks2.3.mlp.fc2.weight, blocks2.3.mlp.fc2.bias, blocks2.4.pos_embed.weight, blocks2.4.pos_embed.bias, blocks2.4.norm1.weight, blocks2.4.norm1.bias, blocks2.4.norm1.running_mean, blocks2.4.norm1.running_var, blocks2.4.conv1.weight, blocks2.4.conv1.bias, blocks2.4.conv2.weight, blocks2.4.conv2.bias, blocks2.4.attn.weight, blocks2.4.attn.bias, blocks2.4.norm2.weight, blocks2.4.norm2.bias, blocks2.4.norm2.running_mean, blocks2.4.norm2.running_var, blocks2.4.mlp.fc1.weight, blocks2.4.mlp.fc1.bias, blocks2.4.mlp.fc2.weight, blocks2.4.mlp.fc2.bias, blocks2.5.pos_embed.weight, blocks2.5.pos_embed.bias, blocks2.5.norm1.weight, blocks2.5.norm1.bias, blocks2.5.norm1.running_mean, blocks2.5.norm1.running_var, blocks2.5.conv1.weight, blocks2.5.conv1.bias, blocks2.5.conv2.weight, blocks2.5.conv2.bias, blocks2.5.attn.weight, blocks2.5.attn.bias, blocks2.5.norm2.weight, blocks2.5.norm2.bias, blocks2.5.norm2.running_mean, blocks2.5.norm2.running_var, blocks2.5.mlp.fc1.weight, blocks2.5.mlp.fc1.bias, blocks2.5.mlp.fc2.weight, blocks2.5.mlp.fc2.bias, blocks2.6.pos_embed.weight, blocks2.6.pos_embed.bias, blocks2.6.norm1.weight, blocks2.6.norm1.bias, blocks2.6.norm1.running_mean, blocks2.6.norm1.running_var, blocks2.6.conv1.weight, blocks2.6.conv1.bias, blocks2.6.conv2.weight, blocks2.6.conv2.bias, blocks2.6.attn.weight, blocks2.6.attn.bias, blocks2.6.norm2.weight, blocks2.6.norm2.bias, blocks2.6.norm2.running_mean, blocks2.6.norm2.running_var, blocks2.6.mlp.fc1.weight, blocks2.6.mlp.fc1.bias, blocks2.6.mlp.fc2.weight, blocks2.6.mlp.fc2.bias, blocks2.7.pos_embed.weight, blocks2.7.pos_embed.bias, blocks2.7.norm1.weight, blocks2.7.norm1.bias, blocks2.7.norm1.running_mean, blocks2.7.norm1.running_var, blocks2.7.conv1.weight, blocks2.7.conv1.bias, blocks2.7.conv2.weight, blocks2.7.conv2.bias, blocks2.7.attn.weight, blocks2.7.attn.bias, blocks2.7.norm2.weight, blocks2.7.norm2.bias, blocks2.7.norm2.running_mean, blocks2.7.norm2.running_var, blocks2.7.mlp.fc1.weight, blocks2.7.mlp.fc1.bias, blocks2.7.mlp.fc2.weight, blocks2.7.mlp.fc2.bias, norm2.weight, norm2.bias, blocks3.0.pos_embed.weight, blocks3.0.pos_embed.bias, blocks3.0.norm1.weight, blocks3.0.norm1.bias, blocks3.0.attn.qkv.weight, blocks3.0.attn.qkv.bias, blocks3.0.attn.proj.weight, blocks3.0.attn.proj.bias, blocks3.0.norm2.weight, blocks3.0.norm2.bias, blocks3.0.mlp.fc1.weight, blocks3.0.mlp.fc1.bias, blocks3.0.mlp.fc2.weight, blocks3.0.mlp.fc2.bias, blocks3.1.pos_embed.weight, blocks3.1.pos_embed.bias, blocks3.1.norm1.weight, blocks3.1.norm1.bias, blocks3.1.attn.qkv.weight, blocks3.1.attn.qkv.bias, blocks3.1.attn.proj.weight, blocks3.1.attn.proj.bias, blocks3.1.norm2.weight, blocks3.1.norm2.bias, blocks3.1.mlp.fc1.weight, blocks3.1.mlp.fc1.bias, blocks3.1.mlp.fc2.weight, blocks3.1.mlp.fc2.bias, blocks3.2.pos_embed.weight, blocks3.2.pos_embed.bias, blocks3.2.norm1.weight, blocks3.2.norm1.bias, blocks3.2.attn.qkv.weight, blocks3.2.attn.qkv.bias, blocks3.2.attn.proj.weight, blocks3.2.attn.proj.bias, blocks3.2.norm2.weight, blocks3.2.norm2.bias, blocks3.2.mlp.fc1.weight, blocks3.2.mlp.fc1.bias, blocks3.2.mlp.fc2.weight, blocks3.2.mlp.fc2.bias, blocks3.3.pos_embed.weight, blocks3.3.pos_embed.bias, blocks3.3.norm1.weight, blocks3.3.norm1.bias, blocks3.3.attn.qkv.weight, blocks3.3.attn.qkv.bias, blocks3.3.attn.proj.weight, blocks3.3.attn.proj.bias, blocks3.3.norm2.weight, blocks3.3.norm2.bias, blocks3.3.mlp.fc1.weight, blocks3.3.mlp.fc1.bias, blocks3.3.mlp.fc2.weight, blocks3.3.mlp.fc2.bias, blocks3.4.pos_embed.weight, blocks3.4.pos_embed.bias, blocks3.4.norm1.weight, blocks3.4.norm1.bias, blocks3.4.attn.qkv.weight, blocks3.4.attn.qkv.bias, blocks3.4.attn.proj.weight, blocks3.4.attn.proj.bias, blocks3.4.norm2.weight, blocks3.4.norm2.bias, blocks3.4.mlp.fc1.weight, blocks3.4.mlp.fc1.bias, blocks3.4.mlp.fc2.weight, blocks3.4.mlp.fc2.bias, blocks3.5.pos_embed.weight, blocks3.5.pos_embed.bias, blocks3.5.norm1.weight, blocks3.5.norm1.bias, blocks3.5.attn.qkv.weight, blocks3.5.attn.qkv.bias, blocks3.5.attn.proj.weight, blocks3.5.attn.proj.bias, blocks3.5.norm2.weight, blocks3.5.norm2.bias, blocks3.5.mlp.fc1.weight, blocks3.5.mlp.fc1.bias, blocks3.5.mlp.fc2.weight, blocks3.5.mlp.fc2.bias, blocks3.6.pos_embed.weight, blocks3.6.pos_embed.bias, blocks3.6.norm1.weight, blocks3.6.norm1.bias, blocks3.6.attn.qkv.weight, blocks3.6.attn.qkv.bias, blocks3.6.attn.proj.weight, blocks3.6.attn.proj.bias, blocks3.6.norm2.weight, blocks3.6.norm2.bias, blocks3.6.mlp.fc1.weight, blocks3.6.mlp.fc1.bias, blocks3.6.mlp.fc2.weight, blocks3.6.mlp.fc2.bias, blocks3.7.pos_embed.weight, blocks3.7.pos_embed.bias, blocks3.7.norm1.weight, blocks3.7.norm1.bias, blocks3.7.attn.qkv.weight, blocks3.7.attn.qkv.bias, blocks3.7.attn.proj.weight, blocks3.7.attn.proj.bias, blocks3.7.norm2.weight, blocks3.7.norm2.bias, blocks3.7.mlp.fc1.weight, blocks3.7.mlp.fc1.bias, blocks3.7.mlp.fc2.weight, blocks3.7.mlp.fc2.bias, blocks3.8.pos_embed.weight, blocks3.8.pos_embed.bias, blocks3.8.norm1.weight, blocks3.8.norm1.bias, blocks3.8.attn.qkv.weight, blocks3.8.attn.qkv.bias, blocks3.8.attn.proj.weight, blocks3.8.attn.proj.bias, blocks3.8.norm2.weight, blocks3.8.norm2.bias, blocks3.8.mlp.fc1.weight, blocks3.8.mlp.fc1.bias, blocks3.8.mlp.fc2.weight, blocks3.8.mlp.fc2.bias, blocks3.9.pos_embed.weight, blocks3.9.pos_embed.bias, blocks3.9.norm1.weight, blocks3.9.norm1.bias, blocks3.9.attn.qkv.weight, blocks3.9.attn.qkv.bias, blocks3.9.attn.proj.weight, blocks3.9.attn.proj.bias, blocks3.9.norm2.weight, blocks3.9.norm2.bias, blocks3.9.mlp.fc1.weight, blocks3.9.mlp.fc1.bias, blocks3.9.mlp.fc2.weight, blocks3.9.mlp.fc2.bias, blocks3.10.pos_embed.weight, blocks3.10.pos_embed.bias, blocks3.10.norm1.weight, blocks3.10.norm1.bias, blocks3.10.attn.qkv.weight, blocks3.10.attn.qkv.bias, blocks3.10.attn.proj.weight, blocks3.10.attn.proj.bias, blocks3.10.norm2.weight, blocks3.10.norm2.bias, blocks3.10.mlp.fc1.weight, blocks3.10.mlp.fc1.bias, blocks3.10.mlp.fc2.weight, blocks3.10.mlp.fc2.bias, blocks3.11.pos_embed.weight, blocks3.11.pos_embed.bias, blocks3.11.norm1.weight, blocks3.11.norm1.bias, blocks3.11.attn.qkv.weight, blocks3.11.attn.qkv.bias, blocks3.11.attn.proj.weight, blocks3.11.attn.proj.bias, blocks3.11.norm2.weight, blocks3.11.norm2.bias, blocks3.11.mlp.fc1.weight, blocks3.11.mlp.fc1.bias, blocks3.11.mlp.fc2.weight, blocks3.11.mlp.fc2.bias, blocks3.12.pos_embed.weight, blocks3.12.pos_embed.bias, blocks3.12.norm1.weight, blocks3.12.norm1.bias, blocks3.12.attn.qkv.weight, blocks3.12.attn.qkv.bias, blocks3.12.attn.proj.weight, blocks3.12.attn.proj.bias, blocks3.12.norm2.weight, blocks3.12.norm2.bias, blocks3.12.mlp.fc1.weight, blocks3.12.mlp.fc1.bias, blocks3.12.mlp.fc2.weight, blocks3.12.mlp.fc2.bias, blocks3.13.pos_embed.weight, blocks3.13.pos_embed.bias, blocks3.13.norm1.weight, blocks3.13.norm1.bias, blocks3.13.attn.qkv.weight, blocks3.13.attn.qkv.bias, blocks3.13.attn.proj.weight, blocks3.13.attn.proj.bias, blocks3.13.norm2.weight, blocks3.13.norm2.bias, blocks3.13.mlp.fc1.weight, blocks3.13.mlp.fc1.bias, blocks3.13.mlp.fc2.weight, blocks3.13.mlp.fc2.bias, blocks3.14.pos_embed.weight, blocks3.14.pos_embed.bias, blocks3.14.norm1.weight, blocks3.14.norm1.bias, blocks3.14.attn.qkv.weight, blocks3.14.attn.qkv.bias, blocks3.14.attn.proj.weight, blocks3.14.attn.proj.bias, blocks3.14.norm2.weight, blocks3.14.norm2.bias, blocks3.14.mlp.fc1.weight, blocks3.14.mlp.fc1.bias, blocks3.14.mlp.fc2.weight, blocks3.14.mlp.fc2.bias, blocks3.15.pos_embed.weight, blocks3.15.pos_embed.bias, blocks3.15.norm1.weight, blocks3.15.norm1.bias, blocks3.15.attn.qkv.weight, blocks3.15.attn.qkv.bias, blocks3.15.attn.proj.weight, blocks3.15.attn.proj.bias, blocks3.15.norm2.weight, blocks3.15.norm2.bias, blocks3.15.mlp.fc1.weight, blocks3.15.mlp.fc1.bias, blocks3.15.mlp.fc2.weight, blocks3.15.mlp.fc2.bias, blocks3.16.pos_embed.weight, blocks3.16.pos_embed.bias, blocks3.16.norm1.weight, blocks3.16.norm1.bias, blocks3.16.attn.qkv.weight, blocks3.16.attn.qkv.bias, blocks3.16.attn.proj.weight, blocks3.16.attn.proj.bias, blocks3.16.norm2.weight, blocks3.16.norm2.bias, blocks3.16.mlp.fc1.weight, blocks3.16.mlp.fc1.bias, blocks3.16.mlp.fc2.weight, blocks3.16.mlp.fc2.bias, blocks3.17.pos_embed.weight, blocks3.17.pos_embed.bias, blocks3.17.norm1.weight, blocks3.17.norm1.bias, blocks3.17.attn.qkv.weight, blocks3.17.attn.qkv.bias, blocks3.17.attn.proj.weight, blocks3.17.attn.proj.bias, blocks3.17.norm2.weight, blocks3.17.norm2.bias, blocks3.17.mlp.fc1.weight, blocks3.17.mlp.fc1.bias, blocks3.17.mlp.fc2.weight, blocks3.17.mlp.fc2.bias, blocks3.18.pos_embed.weight, blocks3.18.pos_embed.bias, blocks3.18.norm1.weight, blocks3.18.norm1.bias, blocks3.18.attn.qkv.weight, blocks3.18.attn.qkv.bias, blocks3.18.attn.proj.weight, blocks3.18.attn.proj.bias, blocks3.18.norm2.weight, blocks3.18.norm2.bias, blocks3.18.mlp.fc1.weight, blocks3.18.mlp.fc1.bias, blocks3.18.mlp.fc2.weight, blocks3.18.mlp.fc2.bias, blocks3.19.pos_embed.weight, blocks3.19.pos_embed.bias, blocks3.19.norm1.weight, blocks3.19.norm1.bias, blocks3.19.attn.qkv.weight, blocks3.19.attn.qkv.bias, blocks3.19.attn.proj.weight, blocks3.19.attn.proj.bias, blocks3.19.norm2.weight, blocks3.19.norm2.bias, blocks3.19.mlp.fc1.weight, blocks3.19.mlp.fc1.bias, blocks3.19.mlp.fc2.weight, blocks3.19.mlp.fc2.bias, norm3.weight, norm3.bias, blocks4.0.pos_embed.weight, blocks4.0.pos_embed.bias, blocks4.0.norm1.weight, blocks4.0.norm1.bias, blocks4.0.attn.qkv.weight, blocks4.0.attn.qkv.bias, blocks4.0.attn.proj.weight, blocks4.0.attn.proj.bias, blocks4.0.norm2.weight, blocks4.0.norm2.bias, blocks4.0.mlp.fc1.weight, blocks4.0.mlp.fc1.bias, blocks4.0.mlp.fc2.weight, blocks4.0.mlp.fc2.bias, blocks4.1.pos_embed.weight, blocks4.1.pos_embed.bias, blocks4.1.norm1.weight, blocks4.1.norm1.bias, blocks4.1.attn.qkv.weight, blocks4.1.attn.qkv.bias, blocks4.1.attn.proj.weight, blocks4.1.attn.proj.bias, blocks4.1.norm2.weight, blocks4.1.norm2.bias, blocks4.1.mlp.fc1.weight, blocks4.1.mlp.fc1.bias, blocks4.1.mlp.fc2.weight, blocks4.1.mlp.fc2.bias, blocks4.2.pos_embed.weight, blocks4.2.pos_embed.bias, blocks4.2.norm1.weight, blocks4.2.norm1.bias, blocks4.2.attn.qkv.weight, blocks4.2.attn.qkv.bias, blocks4.2.attn.proj.weight, blocks4.2.attn.proj.bias, blocks4.2.norm2.weight, blocks4.2.norm2.bias, blocks4.2.mlp.fc1.weight, blocks4.2.mlp.fc1.bias, blocks4.2.mlp.fc2.weight, blocks4.2.mlp.fc2.bias, blocks4.3.pos_embed.weight, blocks4.3.pos_embed.bias, blocks4.3.norm1.weight, blocks4.3.norm1.bias, blocks4.3.attn.qkv.weight, blocks4.3.attn.qkv.bias, blocks4.3.attn.proj.weight, blocks4.3.attn.proj.bias, blocks4.3.norm2.weight, blocks4.3.norm2.bias, blocks4.3.mlp.fc1.weight, blocks4.3.mlp.fc1.bias, blocks4.3.mlp.fc2.weight, blocks4.3.mlp.fc2.bias, blocks4.4.pos_embed.weight, blocks4.4.pos_embed.bias, blocks4.4.norm1.weight, blocks4.4.norm1.bias, blocks4.4.attn.qkv.weight, blocks4.4.attn.qkv.bias, blocks4.4.attn.proj.weight, blocks4.4.attn.proj.bias, blocks4.4.norm2.weight, blocks4.4.norm2.bias, blocks4.4.mlp.fc1.weight, blocks4.4.mlp.fc1.bias, blocks4.4.mlp.fc2.weight, blocks4.4.mlp.fc2.bias, blocks4.5.pos_embed.weight, blocks4.5.pos_embed.bias, blocks4.5.norm1.weight, blocks4.5.norm1.bias, blocks4.5.attn.qkv.weight, blocks4.5.attn.qkv.bias, blocks4.5.attn.proj.weight, blocks4.5.attn.proj.bias, blocks4.5.norm2.weight, blocks4.5.norm2.bias, blocks4.5.mlp.fc1.weight, blocks4.5.mlp.fc1.bias, blocks4.5.mlp.fc2.weight, blocks4.5.mlp.fc2.bias, blocks4.6.pos_embed.weight, blocks4.6.pos_embed.bias, blocks4.6.norm1.weight, blocks4.6.norm1.bias, blocks4.6.attn.qkv.weight, blocks4.6.attn.qkv.bias, blocks4.6.attn.proj.weight, blocks4.6.attn.proj.bias, blocks4.6.norm2.weight, blocks4.6.norm2.bias, blocks4.6.mlp.fc1.weight, blocks4.6.mlp.fc1.bias, blocks4.6.mlp.fc2.weight, blocks4.6.mlp.fc2.bias, norm4.weight, norm4.bias
07/24 14:42:06 - mmpose - INFO - Load pretrained model from /root/mmpose/projects/uniformer/pretrained/uniformer_base_in1k.pth
07/24 14:42:10 - mmengine - INFO - Distributed training is not used, all SyncBatchNorm (SyncBN) layers in the model will be automatically reverted to BatchNormXd layers if they are used.
07/24 14:42:10 - mmengine - INFO - Hooks will be executed in the following order:
before_run:
(VERY_HIGH ) RuntimeInfoHook
(BELOW_NORMAL) LoggerHook
--------------------
before_train:
(VERY_HIGH ) RuntimeInfoHook
(NORMAL ) IterTimerHook
(VERY_LOW ) CheckpointHook
--------------------
before_train_epoch:
(VERY_HIGH ) RuntimeInfoHook
(NORMAL ) IterTimerHook
(NORMAL ) DistSamplerSeedHook
--------------------
before_train_iter:
(VERY_HIGH ) RuntimeInfoHook
(NORMAL ) IterTimerHook
--------------------
after_train_iter:
(VERY_HIGH ) RuntimeInfoHook
(NORMAL ) IterTimerHook
(BELOW_NORMAL) LoggerHook
(LOW ) ParamSchedulerHook
(VERY_LOW ) CheckpointHook
--------------------
after_train_epoch:
(NORMAL ) IterTimerHook
(NORMAL ) SyncBuffersHook
(LOW ) ParamSchedulerHook
(VERY_LOW ) CheckpointHook
--------------------
before_val_epoch:
(NORMAL ) IterTimerHook
(NORMAL ) SyncBuffersHook
--------------------
before_val_iter:
(NORMAL ) IterTimerHook
--------------------
after_val_iter:
(NORMAL ) IterTimerHook
(NORMAL ) PoseVisualizationHook
(BELOW_NORMAL) LoggerHook
--------------------
after_val_epoch:
(VERY_HIGH ) RuntimeInfoHook
(NORMAL ) IterTimerHook
(BELOW_NORMAL) LoggerHook
(LOW ) ParamSchedulerHook
(VERY_LOW ) CheckpointHook
--------------------
after_train:
(VERY_LOW ) CheckpointHook
--------------------
before_test_epoch:
(NORMAL ) IterTimerHook
--------------------
before_test_iter:
(NORMAL ) IterTimerHook
--------------------
after_test_iter:
(NORMAL ) IterTimerHook
(NORMAL ) PoseVisualizationHook
(BELOW_NORMAL) LoggerHook
--------------------
after_test_epoch:
(VERY_HIGH ) RuntimeInfoHook
(NORMAL ) IterTimerHook
(BELOW_NORMAL) LoggerHook
--------------------
after_run:
(BELOW_NORMAL) LoggerHook
--------------------
loading annotations into memory...
Done (t=0.29s)
creating index...
index created!
loading annotations into memory...
Done (t=0.19s)
creating index...
index created!
Loads checkpoint by http backend from path: https://download.openmmlab.com/mmpose/v1/projects/uniformer/top_down_384x288_global_base-c650da38_20230724.pth
Downloading: "https://download.openmmlab.com/mmpose/v1/projects/uniformer/top_down_384x288_global_base-c650da38_20230724.pth" to /root/.cache/torch/hub/checkpoints/top_down_384x288_global_base-c650da38_20230724.pth
100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 204M/204M [00:09<00:00, 21.6MB/s]
07/24 14:42:29 - mmengine - INFO - Load checkpoint from https://download.openmmlab.com/mmpose/v1/projects/uniformer/top_down_384x288_global_base-c650da38_20230724.pth
07/24 14:44:48 - mmengine - INFO - Epoch(test) [ 50/407] eta: 0:16:35 time: 2.789852 data_time: 0.260804 memory: 6649
07/24 14:47:06 - mmengine - INFO - Epoch(test) [100/407] eta: 0:14:11 time: 2.755543 data_time: 0.209653 memory: 6649
07/24 14:49:24 - mmengine - INFO - Epoch(test) [150/407] eta: 0:11:51 time: 2.760203 data_time: 0.212239 memory: 6649
07/24 14:51:42 - mmengine - INFO - Epoch(test) [200/407] eta: 0:09:32 time: 2.752695 data_time: 0.202930 memory: 6649
07/24 14:53:59 - mmengine - INFO - Epoch(test) [250/407] eta: 0:07:13 time: 2.757030 data_time: 0.213792 memory: 6649
07/24 14:56:18 - mmengine - INFO - Epoch(test) [300/407] eta: 0:04:55 time: 2.763714 data_time: 0.216035 memory: 6649
07/24 14:58:35 - mmengine - INFO - Epoch(test) [350/407] eta: 0:02:37 time: 2.754733 data_time: 0.205812 memory: 6649
07/24 15:00:53 - mmengine - INFO - Epoch(test) [400/407] eta: 0:00:19 time: 2.756398 data_time: 0.217246 memory: 6649
07/24 15:01:45 - mmengine - INFO - Evaluating CocoMetric...
Loading and preparing results...
DONE (t=3.20s)
creating index...
index created!
Running per image evaluation...
Evaluate annotation type *keypoints*
DONE (t=9.61s).
Accumulating evaluation results...
DONE (t=0.31s).
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets= 20 ] = 0.767
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets= 20 ] = 0.908
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets= 20 ] = 0.841
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets= 20 ] = 0.729
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets= 20 ] = 0.837
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 20 ] = 0.819
Average Recall (AR) @[ IoU=0.50 | area= all | maxDets= 20 ] = 0.946
Average Recall (AR) @[ IoU=0.75 | area= all | maxDets= 20 ] = 0.883
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets= 20 ] = 0.777
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets= 20 ] = 0.880
07/24 15:01:58 - mmengine - INFO - Epoch(test) [407/407] coco/AP: 0.767028 coco/AP .5: 0.907571 coco/AP .75: 0.840608 coco/AP (M): 0.729437 coco/AP (L): 0.836965 coco/AR: 0.818640 coco/AR .5: 0.946316 coco/AR .75: 0.882714 coco/AR (M): 0.776618 coco/AR (L): 0.880119 data_time: 0.216960 time: 2.759213 whereas the accuracy listed in the official UniFormer repo is:
|
Testing result on 07/24 15:12:03 - mmpose - INFO - Use torch.utils.checkpoint: False
07/24 15:12:03 - mmpose - INFO - torch.utils.checkpoint number: (0, 0, 0, 0)
07/24 15:12:03 - mmpose - INFO - Use global window for all blocks in stage3
07/24 15:12:04 - mmpose - INFO - Loads checkpoint by local backend from path: /root/mmpose/projects/uniformer/pretrained/uniformer_small_in1k.pth
07/24 15:12:04 - mmpose - WARNING - The model and loaded state dict do not match exactly
unexpected key in source state_dict: model
missing keys in source state_dict: patch_embed1.norm.weight, patch_embed1.norm.bias, patch_embed1.proj.weight, patch_embed1.proj.bias, patch_embed2.norm.weight, patch_embed2.norm.bias, patch_embed2.proj.weight, patch_embed2.proj.bias, patch_embed3.norm.weight, patch_embed3.norm.bias, patch_embed3.proj.weight, patch_embed3.proj.bias, patch_embed4.norm.weight, patch_embed4.norm.bias, patch_embed4.proj.weight, patch_embed4.proj.bias, blocks1.0.pos_embed.weight, blocks1.0.pos_embed.bias, blocks1.0.norm1.weight, blocks1.0.norm1.bias, blocks1.0.norm1.running_mean, blocks1.0.norm1.running_var, blocks1.0.conv1.weight, blocks1.0.conv1.bias, blocks1.0.conv2.weight, blocks1.0.conv2.bias, blocks1.0.attn.weight, blocks1.0.attn.bias, blocks1.0.norm2.weight, blocks1.0.norm2.bias, blocks1.0.norm2.running_mean, blocks1.0.norm2.running_var, blocks1.0.mlp.fc1.weight, blocks1.0.mlp.fc1.bias, blocks1.0.mlp.fc2.weight, blocks1.0.mlp.fc2.bias, blocks1.1.pos_embed.weight, blocks1.1.pos_embed.bias, blocks1.1.norm1.weight, blocks1.1.norm1.bias, blocks1.1.norm1.running_mean, blocks1.1.norm1.running_var, blocks1.1.conv1.weight, blocks1.1.conv1.bias, blocks1.1.conv2.weight, blocks1.1.conv2.bias, blocks1.1.attn.weight, blocks1.1.attn.bias, blocks1.1.norm2.weight, blocks1.1.norm2.bias, blocks1.1.norm2.running_mean, blocks1.1.norm2.running_var, blocks1.1.mlp.fc1.weight, blocks1.1.mlp.fc1.bias, blocks1.1.mlp.fc2.weight, blocks1.1.mlp.fc2.bias, blocks1.2.pos_embed.weight, blocks1.2.pos_embed.bias, blocks1.2.norm1.weight, blocks1.2.norm1.bias, blocks1.2.norm1.running_mean, blocks1.2.norm1.running_var, blocks1.2.conv1.weight, blocks1.2.conv1.bias, blocks1.2.conv2.weight, blocks1.2.conv2.bias, blocks1.2.attn.weight, blocks1.2.attn.bias, blocks1.2.norm2.weight, blocks1.2.norm2.bias, blocks1.2.norm2.running_mean, blocks1.2.norm2.running_var, blocks1.2.mlp.fc1.weight, blocks1.2.mlp.fc1.bias, blocks1.2.mlp.fc2.weight, blocks1.2.mlp.fc2.bias, norm1.weight, norm1.bias, blocks2.0.pos_embed.weight, blocks2.0.pos_embed.bias, blocks2.0.norm1.weight, blocks2.0.norm1.bias, blocks2.0.norm1.running_mean, blocks2.0.norm1.running_var, blocks2.0.conv1.weight, blocks2.0.conv1.bias, blocks2.0.conv2.weight, blocks2.0.conv2.bias, blocks2.0.attn.weight, blocks2.0.attn.bias, blocks2.0.norm2.weight, blocks2.0.norm2.bias, blocks2.0.norm2.running_mean, blocks2.0.norm2.running_var, blocks2.0.mlp.fc1.weight, blocks2.0.mlp.fc1.bias, blocks2.0.mlp.fc2.weight, blocks2.0.mlp.fc2.bias, blocks2.1.pos_embed.weight, blocks2.1.pos_embed.bias, blocks2.1.norm1.weight, blocks2.1.norm1.bias, blocks2.1.norm1.running_mean, blocks2.1.norm1.running_var, blocks2.1.conv1.weight, blocks2.1.conv1.bias, blocks2.1.conv2.weight, blocks2.1.conv2.bias, blocks2.1.attn.weight, blocks2.1.attn.bias, blocks2.1.norm2.weight, blocks2.1.norm2.bias, blocks2.1.norm2.running_mean, blocks2.1.norm2.running_var, blocks2.1.mlp.fc1.weight, blocks2.1.mlp.fc1.bias, blocks2.1.mlp.fc2.weight, blocks2.1.mlp.fc2.bias, blocks2.2.pos_embed.weight, blocks2.2.pos_embed.bias, blocks2.2.norm1.weight, blocks2.2.norm1.bias, blocks2.2.norm1.running_mean, blocks2.2.norm1.running_var, blocks2.2.conv1.weight, blocks2.2.conv1.bias, blocks2.2.conv2.weight, blocks2.2.conv2.bias, blocks2.2.attn.weight, blocks2.2.attn.bias, blocks2.2.norm2.weight, blocks2.2.norm2.bias, blocks2.2.norm2.running_mean, blocks2.2.norm2.running_var, blocks2.2.mlp.fc1.weight, blocks2.2.mlp.fc1.bias, blocks2.2.mlp.fc2.weight, blocks2.2.mlp.fc2.bias, blocks2.3.pos_embed.weight, blocks2.3.pos_embed.bias, blocks2.3.norm1.weight, blocks2.3.norm1.bias, blocks2.3.norm1.running_mean, blocks2.3.norm1.running_var, blocks2.3.conv1.weight, blocks2.3.conv1.bias, blocks2.3.conv2.weight, blocks2.3.conv2.bias, blocks2.3.attn.weight, blocks2.3.attn.bias, blocks2.3.norm2.weight, blocks2.3.norm2.bias, blocks2.3.norm2.running_mean, blocks2.3.norm2.running_var, blocks2.3.mlp.fc1.weight, blocks2.3.mlp.fc1.bias, blocks2.3.mlp.fc2.weight, blocks2.3.mlp.fc2.bias, norm2.weight, norm2.bias, blocks3.0.pos_embed.weight, blocks3.0.pos_embed.bias, blocks3.0.norm1.weight, blocks3.0.norm1.bias, blocks3.0.attn.qkv.weight, blocks3.0.attn.qkv.bias, blocks3.0.attn.proj.weight, blocks3.0.attn.proj.bias, blocks3.0.norm2.weight, blocks3.0.norm2.bias, blocks3.0.mlp.fc1.weight, blocks3.0.mlp.fc1.bias, blocks3.0.mlp.fc2.weight, blocks3.0.mlp.fc2.bias, blocks3.1.pos_embed.weight, blocks3.1.pos_embed.bias, blocks3.1.norm1.weight, blocks3.1.norm1.bias, blocks3.1.attn.qkv.weight, blocks3.1.attn.qkv.bias, blocks3.1.attn.proj.weight, blocks3.1.attn.proj.bias, blocks3.1.norm2.weight, blocks3.1.norm2.bias, blocks3.1.mlp.fc1.weight, blocks3.1.mlp.fc1.bias, blocks3.1.mlp.fc2.weight, blocks3.1.mlp.fc2.bias, blocks3.2.pos_embed.weight, blocks3.2.pos_embed.bias, blocks3.2.norm1.weight, blocks3.2.norm1.bias, blocks3.2.attn.qkv.weight, blocks3.2.attn.qkv.bias, blocks3.2.attn.proj.weight, blocks3.2.attn.proj.bias, blocks3.2.norm2.weight, blocks3.2.norm2.bias, blocks3.2.mlp.fc1.weight, blocks3.2.mlp.fc1.bias, blocks3.2.mlp.fc2.weight, blocks3.2.mlp.fc2.bias, blocks3.3.pos_embed.weight, blocks3.3.pos_embed.bias, blocks3.3.norm1.weight, blocks3.3.norm1.bias, blocks3.3.attn.qkv.weight, blocks3.3.attn.qkv.bias, blocks3.3.attn.proj.weight, blocks3.3.attn.proj.bias, blocks3.3.norm2.weight, blocks3.3.norm2.bias, blocks3.3.mlp.fc1.weight, blocks3.3.mlp.fc1.bias, blocks3.3.mlp.fc2.weight, blocks3.3.mlp.fc2.bias, blocks3.4.pos_embed.weight, blocks3.4.pos_embed.bias, blocks3.4.norm1.weight, blocks3.4.norm1.bias, blocks3.4.attn.qkv.weight, blocks3.4.attn.qkv.bias, blocks3.4.attn.proj.weight, blocks3.4.attn.proj.bias, blocks3.4.norm2.weight, blocks3.4.norm2.bias, blocks3.4.mlp.fc1.weight, blocks3.4.mlp.fc1.bias, blocks3.4.mlp.fc2.weight, blocks3.4.mlp.fc2.bias, blocks3.5.pos_embed.weight, blocks3.5.pos_embed.bias, blocks3.5.norm1.weight, blocks3.5.norm1.bias, blocks3.5.attn.qkv.weight, blocks3.5.attn.qkv.bias, blocks3.5.attn.proj.weight, blocks3.5.attn.proj.bias, blocks3.5.norm2.weight, blocks3.5.norm2.bias, blocks3.5.mlp.fc1.weight, blocks3.5.mlp.fc1.bias, blocks3.5.mlp.fc2.weight, blocks3.5.mlp.fc2.bias, blocks3.6.pos_embed.weight, blocks3.6.pos_embed.bias, blocks3.6.norm1.weight, blocks3.6.norm1.bias, blocks3.6.attn.qkv.weight, blocks3.6.attn.qkv.bias, blocks3.6.attn.proj.weight, blocks3.6.attn.proj.bias, blocks3.6.norm2.weight, blocks3.6.norm2.bias, blocks3.6.mlp.fc1.weight, blocks3.6.mlp.fc1.bias, blocks3.6.mlp.fc2.weight, blocks3.6.mlp.fc2.bias, blocks3.7.pos_embed.weight, blocks3.7.pos_embed.bias, blocks3.7.norm1.weight, blocks3.7.norm1.bias, blocks3.7.attn.qkv.weight, blocks3.7.attn.qkv.bias, blocks3.7.attn.proj.weight, blocks3.7.attn.proj.bias, blocks3.7.norm2.weight, blocks3.7.norm2.bias, blocks3.7.mlp.fc1.weight, blocks3.7.mlp.fc1.bias, blocks3.7.mlp.fc2.weight, blocks3.7.mlp.fc2.bias, norm3.weight, norm3.bias, blocks4.0.pos_embed.weight, blocks4.0.pos_embed.bias, blocks4.0.norm1.weight, blocks4.0.norm1.bias, blocks4.0.attn.qkv.weight, blocks4.0.attn.qkv.bias, blocks4.0.attn.proj.weight, blocks4.0.attn.proj.bias, blocks4.0.norm2.weight, blocks4.0.norm2.bias, blocks4.0.mlp.fc1.weight, blocks4.0.mlp.fc1.bias, blocks4.0.mlp.fc2.weight, blocks4.0.mlp.fc2.bias, blocks4.1.pos_embed.weight, blocks4.1.pos_embed.bias, blocks4.1.norm1.weight, blocks4.1.norm1.bias, blocks4.1.attn.qkv.weight, blocks4.1.attn.qkv.bias, blocks4.1.attn.proj.weight, blocks4.1.attn.proj.bias, blocks4.1.norm2.weight, blocks4.1.norm2.bias, blocks4.1.mlp.fc1.weight, blocks4.1.mlp.fc1.bias, blocks4.1.mlp.fc2.weight, blocks4.1.mlp.fc2.bias, blocks4.2.pos_embed.weight, blocks4.2.pos_embed.bias, blocks4.2.norm1.weight, blocks4.2.norm1.bias, blocks4.2.attn.qkv.weight, blocks4.2.attn.qkv.bias, blocks4.2.attn.proj.weight, blocks4.2.attn.proj.bias, blocks4.2.norm2.weight, blocks4.2.norm2.bias, blocks4.2.mlp.fc1.weight, blocks4.2.mlp.fc1.bias, blocks4.2.mlp.fc2.weight, blocks4.2.mlp.fc2.bias, norm4.weight, norm4.bias
07/24 15:12:04 - mmpose - INFO - Load pretrained model from /root/mmpose/projects/uniformer/pretrained/uniformer_small_in1k.pth
07/24 15:12:08 - mmengine - INFO - Distributed training is not used, all SyncBatchNorm (SyncBN) layers in the model will be automatically reverted to BatchNormXd layers if they are used.
07/24 15:12:08 - mmengine - INFO - Hooks will be executed in the following order:
before_run:
(VERY_HIGH ) RuntimeInfoHook
(BELOW_NORMAL) LoggerHook
--------------------
before_train:
(VERY_HIGH ) RuntimeInfoHook
(NORMAL ) IterTimerHook
(VERY_LOW ) CheckpointHook
--------------------
before_train_epoch:
(VERY_HIGH ) RuntimeInfoHook
(NORMAL ) IterTimerHook
(NORMAL ) DistSamplerSeedHook
--------------------
before_train_iter:
(VERY_HIGH ) RuntimeInfoHook
(NORMAL ) IterTimerHook
--------------------
after_train_iter:
(VERY_HIGH ) RuntimeInfoHook
(NORMAL ) IterTimerHook
(BELOW_NORMAL) LoggerHook
(LOW ) ParamSchedulerHook
(VERY_LOW ) CheckpointHook
--------------------
after_train_epoch:
(NORMAL ) IterTimerHook
(NORMAL ) SyncBuffersHook
(LOW ) ParamSchedulerHook
(VERY_LOW ) CheckpointHook
--------------------
before_val_epoch:
(NORMAL ) IterTimerHook
(NORMAL ) SyncBuffersHook
--------------------
before_val_iter:
(NORMAL ) IterTimerHook
--------------------
after_val_iter:
(NORMAL ) IterTimerHook
(NORMAL ) PoseVisualizationHook
(BELOW_NORMAL) LoggerHook
--------------------
after_val_epoch:
(VERY_HIGH ) RuntimeInfoHook
(NORMAL ) IterTimerHook
(BELOW_NORMAL) LoggerHook
(LOW ) ParamSchedulerHook
(VERY_LOW ) CheckpointHook
--------------------
after_train:
(VERY_LOW ) CheckpointHook
--------------------
before_test_epoch:
(NORMAL ) IterTimerHook
--------------------
before_test_iter:
(NORMAL ) IterTimerHook
--------------------
after_test_iter:
(NORMAL ) IterTimerHook
(NORMAL ) PoseVisualizationHook
(BELOW_NORMAL) LoggerHook
--------------------
after_test_epoch:
(VERY_HIGH ) RuntimeInfoHook
(NORMAL ) IterTimerHook
(BELOW_NORMAL) LoggerHook
--------------------
after_run:
(BELOW_NORMAL) LoggerHook
--------------------
loading annotations into memory...
Done (t=0.29s)
creating index...
index created!
loading annotations into memory...
Done (t=0.19s)
creating index...
index created!
Loads checkpoint by http backend from path: https://download.openmmlab.com/mmpose/v1/projects/uniformer/top_down_384x288_global_small-7a613f78_20230724.pth
Downloading: "https://download.openmmlab.com/mmpose/v1/projects/uniformer/top_down_384x288_global_small-7a613f78_20230724.pth" to /root/.cache/torch/hub/checkpoints/top_down_384x288_global_small-7a613f78_20230724.pth
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 96.3M/96.3M [00:04<00:00, 21.2MB/s]
07/24 15:12:21 - mmengine - INFO - Load checkpoint from https://download.openmmlab.com/mmpose/v1/projects/uniformer/top_down_384x288_global_small-7a613f78_20230724.pth
07/24 15:13:45 - mmengine - INFO - Epoch(test) [ 50/407] eta: 0:09:58 time: 1.675995 data_time: 0.252927 memory: 6540
07/24 15:15:07 - mmengine - INFO - Epoch(test) [100/407] eta: 0:08:28 time: 1.635582 data_time: 0.206682 memory: 6540
07/24 15:16:29 - mmengine - INFO - Epoch(test) [150/407] eta: 0:07:04 time: 1.646374 data_time: 0.215712 memory: 6540
07/24 15:17:51 - mmengine - INFO - Epoch(test) [200/407] eta: 0:05:41 time: 1.637084 data_time: 0.210125 memory: 6540
07/24 15:19:13 - mmengine - INFO - Epoch(test) [250/407] eta: 0:04:18 time: 1.642803 data_time: 0.216182 memory: 6540
07/24 15:20:35 - mmengine - INFO - Epoch(test) [300/407] eta: 0:02:56 time: 1.637716 data_time: 0.213193 memory: 6540
07/24 15:21:57 - mmengine - INFO - Epoch(test) [350/407] eta: 0:01:33 time: 1.640897 data_time: 0.214671 memory: 6540
07/24 15:23:19 - mmengine - INFO - Epoch(test) [400/407] eta: 0:00:11 time: 1.639230 data_time: 0.210880 memory: 6540
07/24 15:24:03 - mmengine - INFO - Evaluating CocoMetric...
Loading and preparing results...
DONE (t=3.46s)
creating index...
index created!
Running per image evaluation...
Evaluate annotation type *keypoints*
DONE (t=9.41s).
Accumulating evaluation results...
DONE (t=0.31s).
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets= 20 ] = 0.759
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets= 20 ] = 0.906
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets= 20 ] = 0.830
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets= 20 ] = 0.722
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets= 20 ] = 0.830
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 20 ] = 0.810
Average Recall (AR) @[ IoU=0.50 | area= all | maxDets= 20 ] = 0.944
Average Recall (AR) @[ IoU=0.75 | area= all | maxDets= 20 ] = 0.873
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets= 20 ] = 0.768
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets= 20 ] = 0.873
07/24 15:24:16 - mmengine - INFO - Epoch(test) [407/407] coco/AP: 0.758805 coco/AP .5: 0.906079 coco/AP .75: 0.829732 coco/AP (M): 0.721798 coco/AP (L): 0.829743 coco/AR: 0.810327 coco/AR .5: 0.944112 coco/AR .75: 0.873268 coco/AR (M): 0.768069 coco/AR (L): 0.872575 data_time: 0.217041 time: 1.642961 whereas the accuracy listed in the official UniFormer repo is:
|
Hi, @xin-li-67, thank you for your effort and contribution. Could you please relocate the configs under |
Got it! I have moved all the config files under the |
Testing result on 07/24 15:27:05 - mmpose - INFO - Use torch.utils.checkpoint: False
07/24 15:27:05 - mmpose - INFO - torch.utils.checkpoint number: (0, 0, 0, 0)
07/24 15:27:05 - mmpose - INFO - Use global window for all blocks in stage3
07/24 15:27:06 - mmpose - INFO - Loads checkpoint by local backend from path: /root/mmpose/projects/uniformer/pretrained/uniformer_base_in1k.pth
07/24 15:27:06 - mmpose - WARNING - The model and loaded state dict do not match exactly
unexpected key in source state_dict: model
missing keys in source state_dict: patch_embed1.norm.weight, patch_embed1.norm.bias, patch_embed1.proj.weight, patch_embed1.proj.bias, patch_embed2.norm.weight, patch_embed2.norm.bias, patch_embed2.proj.weight, patch_embed2.proj.bias, patch_embed3.norm.weight, patch_embed3.norm.bias, patch_embed3.proj.weight, patch_embed3.proj.bias, patch_embed4.norm.weight, patch_embed4.norm.bias, patch_embed4.proj.weight, patch_embed4.proj.bias, blocks1.0.pos_embed.weight, blocks1.0.pos_embed.bias, blocks1.0.norm1.weight, blocks1.0.norm1.bias, blocks1.0.norm1.running_mean, blocks1.0.norm1.running_var, blocks1.0.conv1.weight, blocks1.0.conv1.bias, blocks1.0.conv2.weight, blocks1.0.conv2.bias, blocks1.0.attn.weight, blocks1.0.attn.bias, blocks1.0.norm2.weight, blocks1.0.norm2.bias, blocks1.0.norm2.running_mean, blocks1.0.norm2.running_var, blocks1.0.mlp.fc1.weight, blocks1.0.mlp.fc1.bias, blocks1.0.mlp.fc2.weight, blocks1.0.mlp.fc2.bias, blocks1.1.pos_embed.weight, blocks1.1.pos_embed.bias, blocks1.1.norm1.weight, blocks1.1.norm1.bias, blocks1.1.norm1.running_mean, blocks1.1.norm1.running_var, blocks1.1.conv1.weight, blocks1.1.conv1.bias, blocks1.1.conv2.weight, blocks1.1.conv2.bias, blocks1.1.attn.weight, blocks1.1.attn.bias, blocks1.1.norm2.weight, blocks1.1.norm2.bias, blocks1.1.norm2.running_mean, blocks1.1.norm2.running_var, blocks1.1.mlp.fc1.weight, blocks1.1.mlp.fc1.bias, blocks1.1.mlp.fc2.weight, blocks1.1.mlp.fc2.bias, blocks1.2.pos_embed.weight, blocks1.2.pos_embed.bias, blocks1.2.norm1.weight, blocks1.2.norm1.bias, blocks1.2.norm1.running_mean, blocks1.2.norm1.running_var, blocks1.2.conv1.weight, blocks1.2.conv1.bias, blocks1.2.conv2.weight, blocks1.2.conv2.bias, blocks1.2.attn.weight, blocks1.2.attn.bias, blocks1.2.norm2.weight, blocks1.2.norm2.bias, blocks1.2.norm2.running_mean, blocks1.2.norm2.running_var, blocks1.2.mlp.fc1.weight, blocks1.2.mlp.fc1.bias, blocks1.2.mlp.fc2.weight, blocks1.2.mlp.fc2.bias, blocks1.3.pos_embed.weight, blocks1.3.pos_embed.bias, blocks1.3.norm1.weight, blocks1.3.norm1.bias, blocks1.3.norm1.running_mean, blocks1.3.norm1.running_var, blocks1.3.conv1.weight, blocks1.3.conv1.bias, blocks1.3.conv2.weight, blocks1.3.conv2.bias, blocks1.3.attn.weight, blocks1.3.attn.bias, blocks1.3.norm2.weight, blocks1.3.norm2.bias, blocks1.3.norm2.running_mean, blocks1.3.norm2.running_var, blocks1.3.mlp.fc1.weight, blocks1.3.mlp.fc1.bias, blocks1.3.mlp.fc2.weight, blocks1.3.mlp.fc2.bias, blocks1.4.pos_embed.weight, blocks1.4.pos_embed.bias, blocks1.4.norm1.weight, blocks1.4.norm1.bias, blocks1.4.norm1.running_mean, blocks1.4.norm1.running_var, blocks1.4.conv1.weight, blocks1.4.conv1.bias, blocks1.4.conv2.weight, blocks1.4.conv2.bias, blocks1.4.attn.weight, blocks1.4.attn.bias, blocks1.4.norm2.weight, blocks1.4.norm2.bias, blocks1.4.norm2.running_mean, blocks1.4.norm2.running_var, blocks1.4.mlp.fc1.weight, blocks1.4.mlp.fc1.bias, blocks1.4.mlp.fc2.weight, blocks1.4.mlp.fc2.bias, norm1.weight, norm1.bias, blocks2.0.pos_embed.weight, blocks2.0.pos_embed.bias, blocks2.0.norm1.weight, blocks2.0.norm1.bias, blocks2.0.norm1.running_mean, blocks2.0.norm1.running_var, blocks2.0.conv1.weight, blocks2.0.conv1.bias, blocks2.0.conv2.weight, blocks2.0.conv2.bias, blocks2.0.attn.weight, blocks2.0.attn.bias, blocks2.0.norm2.weight, blocks2.0.norm2.bias, blocks2.0.norm2.running_mean, blocks2.0.norm2.running_var, blocks2.0.mlp.fc1.weight, blocks2.0.mlp.fc1.bias, blocks2.0.mlp.fc2.weight, blocks2.0.mlp.fc2.bias, blocks2.1.pos_embed.weight, blocks2.1.pos_embed.bias, blocks2.1.norm1.weight, blocks2.1.norm1.bias, blocks2.1.norm1.running_mean, blocks2.1.norm1.running_var, blocks2.1.conv1.weight, blocks2.1.conv1.bias, blocks2.1.conv2.weight, blocks2.1.conv2.bias, blocks2.1.attn.weight, blocks2.1.attn.bias, blocks2.1.norm2.weight, blocks2.1.norm2.bias, blocks2.1.norm2.running_mean, blocks2.1.norm2.running_var, blocks2.1.mlp.fc1.weight, blocks2.1.mlp.fc1.bias, blocks2.1.mlp.fc2.weight, blocks2.1.mlp.fc2.bias, blocks2.2.pos_embed.weight, blocks2.2.pos_embed.bias, blocks2.2.norm1.weight, blocks2.2.norm1.bias, blocks2.2.norm1.running_mean, blocks2.2.norm1.running_var, blocks2.2.conv1.weight, blocks2.2.conv1.bias, blocks2.2.conv2.weight, blocks2.2.conv2.bias, blocks2.2.attn.weight, blocks2.2.attn.bias, blocks2.2.norm2.weight, blocks2.2.norm2.bias, blocks2.2.norm2.running_mean, blocks2.2.norm2.running_var, blocks2.2.mlp.fc1.weight, blocks2.2.mlp.fc1.bias, blocks2.2.mlp.fc2.weight, blocks2.2.mlp.fc2.bias, blocks2.3.pos_embed.weight, blocks2.3.pos_embed.bias, blocks2.3.norm1.weight, blocks2.3.norm1.bias, blocks2.3.norm1.running_mean, blocks2.3.norm1.running_var, blocks2.3.conv1.weight, blocks2.3.conv1.bias, blocks2.3.conv2.weight, blocks2.3.conv2.bias, blocks2.3.attn.weight, blocks2.3.attn.bias, blocks2.3.norm2.weight, blocks2.3.norm2.bias, blocks2.3.norm2.running_mean, blocks2.3.norm2.running_var, blocks2.3.mlp.fc1.weight, blocks2.3.mlp.fc1.bias, blocks2.3.mlp.fc2.weight, blocks2.3.mlp.fc2.bias, blocks2.4.pos_embed.weight, blocks2.4.pos_embed.bias, blocks2.4.norm1.weight, blocks2.4.norm1.bias, blocks2.4.norm1.running_mean, blocks2.4.norm1.running_var, blocks2.4.conv1.weight, blocks2.4.conv1.bias, blocks2.4.conv2.weight, blocks2.4.conv2.bias, blocks2.4.attn.weight, blocks2.4.attn.bias, blocks2.4.norm2.weight, blocks2.4.norm2.bias, blocks2.4.norm2.running_mean, blocks2.4.norm2.running_var, blocks2.4.mlp.fc1.weight, blocks2.4.mlp.fc1.bias, blocks2.4.mlp.fc2.weight, blocks2.4.mlp.fc2.bias, blocks2.5.pos_embed.weight, blocks2.5.pos_embed.bias, blocks2.5.norm1.weight, blocks2.5.norm1.bias, blocks2.5.norm1.running_mean, blocks2.5.norm1.running_var, blocks2.5.conv1.weight, blocks2.5.conv1.bias, blocks2.5.conv2.weight, blocks2.5.conv2.bias, blocks2.5.attn.weight, blocks2.5.attn.bias, blocks2.5.norm2.weight, blocks2.5.norm2.bias, blocks2.5.norm2.running_mean, blocks2.5.norm2.running_var, blocks2.5.mlp.fc1.weight, blocks2.5.mlp.fc1.bias, blocks2.5.mlp.fc2.weight, blocks2.5.mlp.fc2.bias, blocks2.6.pos_embed.weight, blocks2.6.pos_embed.bias, blocks2.6.norm1.weight, blocks2.6.norm1.bias, blocks2.6.norm1.running_mean, blocks2.6.norm1.running_var, blocks2.6.conv1.weight, blocks2.6.conv1.bias, blocks2.6.conv2.weight, blocks2.6.conv2.bias, blocks2.6.attn.weight, blocks2.6.attn.bias, blocks2.6.norm2.weight, blocks2.6.norm2.bias, blocks2.6.norm2.running_mean, blocks2.6.norm2.running_var, blocks2.6.mlp.fc1.weight, blocks2.6.mlp.fc1.bias, blocks2.6.mlp.fc2.weight, blocks2.6.mlp.fc2.bias, blocks2.7.pos_embed.weight, blocks2.7.pos_embed.bias, blocks2.7.norm1.weight, blocks2.7.norm1.bias, blocks2.7.norm1.running_mean, blocks2.7.norm1.running_var, blocks2.7.conv1.weight, blocks2.7.conv1.bias, blocks2.7.conv2.weight, blocks2.7.conv2.bias, blocks2.7.attn.weight, blocks2.7.attn.bias, blocks2.7.norm2.weight, blocks2.7.norm2.bias, blocks2.7.norm2.running_mean, blocks2.7.norm2.running_var, blocks2.7.mlp.fc1.weight, blocks2.7.mlp.fc1.bias, blocks2.7.mlp.fc2.weight, blocks2.7.mlp.fc2.bias, norm2.weight, norm2.bias, blocks3.0.pos_embed.weight, blocks3.0.pos_embed.bias, blocks3.0.norm1.weight, blocks3.0.norm1.bias, blocks3.0.attn.qkv.weight, blocks3.0.attn.qkv.bias, blocks3.0.attn.proj.weight, blocks3.0.attn.proj.bias, blocks3.0.norm2.weight, blocks3.0.norm2.bias, blocks3.0.mlp.fc1.weight, blocks3.0.mlp.fc1.bias, blocks3.0.mlp.fc2.weight, blocks3.0.mlp.fc2.bias, blocks3.1.pos_embed.weight, blocks3.1.pos_embed.bias, blocks3.1.norm1.weight, blocks3.1.norm1.bias, blocks3.1.attn.qkv.weight, blocks3.1.attn.qkv.bias, blocks3.1.attn.proj.weight, blocks3.1.attn.proj.bias, blocks3.1.norm2.weight, blocks3.1.norm2.bias, blocks3.1.mlp.fc1.weight, blocks3.1.mlp.fc1.bias, blocks3.1.mlp.fc2.weight, blocks3.1.mlp.fc2.bias, blocks3.2.pos_embed.weight, blocks3.2.pos_embed.bias, blocks3.2.norm1.weight, blocks3.2.norm1.bias, blocks3.2.attn.qkv.weight, blocks3.2.attn.qkv.bias, blocks3.2.attn.proj.weight, blocks3.2.attn.proj.bias, blocks3.2.norm2.weight, blocks3.2.norm2.bias, blocks3.2.mlp.fc1.weight, blocks3.2.mlp.fc1.bias, blocks3.2.mlp.fc2.weight, blocks3.2.mlp.fc2.bias, blocks3.3.pos_embed.weight, blocks3.3.pos_embed.bias, blocks3.3.norm1.weight, blocks3.3.norm1.bias, blocks3.3.attn.qkv.weight, blocks3.3.attn.qkv.bias, blocks3.3.attn.proj.weight, blocks3.3.attn.proj.bias, blocks3.3.norm2.weight, blocks3.3.norm2.bias, blocks3.3.mlp.fc1.weight, blocks3.3.mlp.fc1.bias, blocks3.3.mlp.fc2.weight, blocks3.3.mlp.fc2.bias, blocks3.4.pos_embed.weight, blocks3.4.pos_embed.bias, blocks3.4.norm1.weight, blocks3.4.norm1.bias, blocks3.4.attn.qkv.weight, blocks3.4.attn.qkv.bias, blocks3.4.attn.proj.weight, blocks3.4.attn.proj.bias, blocks3.4.norm2.weight, blocks3.4.norm2.bias, blocks3.4.mlp.fc1.weight, blocks3.4.mlp.fc1.bias, blocks3.4.mlp.fc2.weight, blocks3.4.mlp.fc2.bias, blocks3.5.pos_embed.weight, blocks3.5.pos_embed.bias, blocks3.5.norm1.weight, blocks3.5.norm1.bias, blocks3.5.attn.qkv.weight, blocks3.5.attn.qkv.bias, blocks3.5.attn.proj.weight, blocks3.5.attn.proj.bias, blocks3.5.norm2.weight, blocks3.5.norm2.bias, blocks3.5.mlp.fc1.weight, blocks3.5.mlp.fc1.bias, blocks3.5.mlp.fc2.weight, blocks3.5.mlp.fc2.bias, blocks3.6.pos_embed.weight, blocks3.6.pos_embed.bias, blocks3.6.norm1.weight, blocks3.6.norm1.bias, blocks3.6.attn.qkv.weight, blocks3.6.attn.qkv.bias, blocks3.6.attn.proj.weight, blocks3.6.attn.proj.bias, blocks3.6.norm2.weight, blocks3.6.norm2.bias, blocks3.6.mlp.fc1.weight, blocks3.6.mlp.fc1.bias, blocks3.6.mlp.fc2.weight, blocks3.6.mlp.fc2.bias, blocks3.7.pos_embed.weight, blocks3.7.pos_embed.bias, blocks3.7.norm1.weight, blocks3.7.norm1.bias, blocks3.7.attn.qkv.weight, blocks3.7.attn.qkv.bias, blocks3.7.attn.proj.weight, blocks3.7.attn.proj.bias, blocks3.7.norm2.weight, blocks3.7.norm2.bias, blocks3.7.mlp.fc1.weight, blocks3.7.mlp.fc1.bias, blocks3.7.mlp.fc2.weight, blocks3.7.mlp.fc2.bias, blocks3.8.pos_embed.weight, blocks3.8.pos_embed.bias, blocks3.8.norm1.weight, blocks3.8.norm1.bias, blocks3.8.attn.qkv.weight, blocks3.8.attn.qkv.bias, blocks3.8.attn.proj.weight, blocks3.8.attn.proj.bias, blocks3.8.norm2.weight, blocks3.8.norm2.bias, blocks3.8.mlp.fc1.weight, blocks3.8.mlp.fc1.bias, blocks3.8.mlp.fc2.weight, blocks3.8.mlp.fc2.bias, blocks3.9.pos_embed.weight, blocks3.9.pos_embed.bias, blocks3.9.norm1.weight, blocks3.9.norm1.bias, blocks3.9.attn.qkv.weight, blocks3.9.attn.qkv.bias, blocks3.9.attn.proj.weight, blocks3.9.attn.proj.bias, blocks3.9.norm2.weight, blocks3.9.norm2.bias, blocks3.9.mlp.fc1.weight, blocks3.9.mlp.fc1.bias, blocks3.9.mlp.fc2.weight, blocks3.9.mlp.fc2.bias, blocks3.10.pos_embed.weight, blocks3.10.pos_embed.bias, blocks3.10.norm1.weight, blocks3.10.norm1.bias, blocks3.10.attn.qkv.weight, blocks3.10.attn.qkv.bias, blocks3.10.attn.proj.weight, blocks3.10.attn.proj.bias, blocks3.10.norm2.weight, blocks3.10.norm2.bias, blocks3.10.mlp.fc1.weight, blocks3.10.mlp.fc1.bias, blocks3.10.mlp.fc2.weight, blocks3.10.mlp.fc2.bias, blocks3.11.pos_embed.weight, blocks3.11.pos_embed.bias, blocks3.11.norm1.weight, blocks3.11.norm1.bias, blocks3.11.attn.qkv.weight, blocks3.11.attn.qkv.bias, blocks3.11.attn.proj.weight, blocks3.11.attn.proj.bias, blocks3.11.norm2.weight, blocks3.11.norm2.bias, blocks3.11.mlp.fc1.weight, blocks3.11.mlp.fc1.bias, blocks3.11.mlp.fc2.weight, blocks3.11.mlp.fc2.bias, blocks3.12.pos_embed.weight, blocks3.12.pos_embed.bias, blocks3.12.norm1.weight, blocks3.12.norm1.bias, blocks3.12.attn.qkv.weight, blocks3.12.attn.qkv.bias, blocks3.12.attn.proj.weight, blocks3.12.attn.proj.bias, blocks3.12.norm2.weight, blocks3.12.norm2.bias, blocks3.12.mlp.fc1.weight, blocks3.12.mlp.fc1.bias, blocks3.12.mlp.fc2.weight, blocks3.12.mlp.fc2.bias, blocks3.13.pos_embed.weight, blocks3.13.pos_embed.bias, blocks3.13.norm1.weight, blocks3.13.norm1.bias, blocks3.13.attn.qkv.weight, blocks3.13.attn.qkv.bias, blocks3.13.attn.proj.weight, blocks3.13.attn.proj.bias, blocks3.13.norm2.weight, blocks3.13.norm2.bias, blocks3.13.mlp.fc1.weight, blocks3.13.mlp.fc1.bias, blocks3.13.mlp.fc2.weight, blocks3.13.mlp.fc2.bias, blocks3.14.pos_embed.weight, blocks3.14.pos_embed.bias, blocks3.14.norm1.weight, blocks3.14.norm1.bias, blocks3.14.attn.qkv.weight, blocks3.14.attn.qkv.bias, blocks3.14.attn.proj.weight, blocks3.14.attn.proj.bias, blocks3.14.norm2.weight, blocks3.14.norm2.bias, blocks3.14.mlp.fc1.weight, blocks3.14.mlp.fc1.bias, blocks3.14.mlp.fc2.weight, blocks3.14.mlp.fc2.bias, blocks3.15.pos_embed.weight, blocks3.15.pos_embed.bias, blocks3.15.norm1.weight, blocks3.15.norm1.bias, blocks3.15.attn.qkv.weight, blocks3.15.attn.qkv.bias, blocks3.15.attn.proj.weight, blocks3.15.attn.proj.bias, blocks3.15.norm2.weight, blocks3.15.norm2.bias, blocks3.15.mlp.fc1.weight, blocks3.15.mlp.fc1.bias, blocks3.15.mlp.fc2.weight, blocks3.15.mlp.fc2.bias, blocks3.16.pos_embed.weight, blocks3.16.pos_embed.bias, blocks3.16.norm1.weight, blocks3.16.norm1.bias, blocks3.16.attn.qkv.weight, blocks3.16.attn.qkv.bias, blocks3.16.attn.proj.weight, blocks3.16.attn.proj.bias, blocks3.16.norm2.weight, blocks3.16.norm2.bias, blocks3.16.mlp.fc1.weight, blocks3.16.mlp.fc1.bias, blocks3.16.mlp.fc2.weight, blocks3.16.mlp.fc2.bias, blocks3.17.pos_embed.weight, blocks3.17.pos_embed.bias, blocks3.17.norm1.weight, blocks3.17.norm1.bias, blocks3.17.attn.qkv.weight, blocks3.17.attn.qkv.bias, blocks3.17.attn.proj.weight, blocks3.17.attn.proj.bias, blocks3.17.norm2.weight, blocks3.17.norm2.bias, blocks3.17.mlp.fc1.weight, blocks3.17.mlp.fc1.bias, blocks3.17.mlp.fc2.weight, blocks3.17.mlp.fc2.bias, blocks3.18.pos_embed.weight, blocks3.18.pos_embed.bias, blocks3.18.norm1.weight, blocks3.18.norm1.bias, blocks3.18.attn.qkv.weight, blocks3.18.attn.qkv.bias, blocks3.18.attn.proj.weight, blocks3.18.attn.proj.bias, blocks3.18.norm2.weight, blocks3.18.norm2.bias, blocks3.18.mlp.fc1.weight, blocks3.18.mlp.fc1.bias, blocks3.18.mlp.fc2.weight, blocks3.18.mlp.fc2.bias, blocks3.19.pos_embed.weight, blocks3.19.pos_embed.bias, blocks3.19.norm1.weight, blocks3.19.norm1.bias, blocks3.19.attn.qkv.weight, blocks3.19.attn.qkv.bias, blocks3.19.attn.proj.weight, blocks3.19.attn.proj.bias, blocks3.19.norm2.weight, blocks3.19.norm2.bias, blocks3.19.mlp.fc1.weight, blocks3.19.mlp.fc1.bias, blocks3.19.mlp.fc2.weight, blocks3.19.mlp.fc2.bias, norm3.weight, norm3.bias, blocks4.0.pos_embed.weight, blocks4.0.pos_embed.bias, blocks4.0.norm1.weight, blocks4.0.norm1.bias, blocks4.0.attn.qkv.weight, blocks4.0.attn.qkv.bias, blocks4.0.attn.proj.weight, blocks4.0.attn.proj.bias, blocks4.0.norm2.weight, blocks4.0.norm2.bias, blocks4.0.mlp.fc1.weight, blocks4.0.mlp.fc1.bias, blocks4.0.mlp.fc2.weight, blocks4.0.mlp.fc2.bias, blocks4.1.pos_embed.weight, blocks4.1.pos_embed.bias, blocks4.1.norm1.weight, blocks4.1.norm1.bias, blocks4.1.attn.qkv.weight, blocks4.1.attn.qkv.bias, blocks4.1.attn.proj.weight, blocks4.1.attn.proj.bias, blocks4.1.norm2.weight, blocks4.1.norm2.bias, blocks4.1.mlp.fc1.weight, blocks4.1.mlp.fc1.bias, blocks4.1.mlp.fc2.weight, blocks4.1.mlp.fc2.bias, blocks4.2.pos_embed.weight, blocks4.2.pos_embed.bias, blocks4.2.norm1.weight, blocks4.2.norm1.bias, blocks4.2.attn.qkv.weight, blocks4.2.attn.qkv.bias, blocks4.2.attn.proj.weight, blocks4.2.attn.proj.bias, blocks4.2.norm2.weight, blocks4.2.norm2.bias, blocks4.2.mlp.fc1.weight, blocks4.2.mlp.fc1.bias, blocks4.2.mlp.fc2.weight, blocks4.2.mlp.fc2.bias, blocks4.3.pos_embed.weight, blocks4.3.pos_embed.bias, blocks4.3.norm1.weight, blocks4.3.norm1.bias, blocks4.3.attn.qkv.weight, blocks4.3.attn.qkv.bias, blocks4.3.attn.proj.weight, blocks4.3.attn.proj.bias, blocks4.3.norm2.weight, blocks4.3.norm2.bias, blocks4.3.mlp.fc1.weight, blocks4.3.mlp.fc1.bias, blocks4.3.mlp.fc2.weight, blocks4.3.mlp.fc2.bias, blocks4.4.pos_embed.weight, blocks4.4.pos_embed.bias, blocks4.4.norm1.weight, blocks4.4.norm1.bias, blocks4.4.attn.qkv.weight, blocks4.4.attn.qkv.bias, blocks4.4.attn.proj.weight, blocks4.4.attn.proj.bias, blocks4.4.norm2.weight, blocks4.4.norm2.bias, blocks4.4.mlp.fc1.weight, blocks4.4.mlp.fc1.bias, blocks4.4.mlp.fc2.weight, blocks4.4.mlp.fc2.bias, blocks4.5.pos_embed.weight, blocks4.5.pos_embed.bias, blocks4.5.norm1.weight, blocks4.5.norm1.bias, blocks4.5.attn.qkv.weight, blocks4.5.attn.qkv.bias, blocks4.5.attn.proj.weight, blocks4.5.attn.proj.bias, blocks4.5.norm2.weight, blocks4.5.norm2.bias, blocks4.5.mlp.fc1.weight, blocks4.5.mlp.fc1.bias, blocks4.5.mlp.fc2.weight, blocks4.5.mlp.fc2.bias, blocks4.6.pos_embed.weight, blocks4.6.pos_embed.bias, blocks4.6.norm1.weight, blocks4.6.norm1.bias, blocks4.6.attn.qkv.weight, blocks4.6.attn.qkv.bias, blocks4.6.attn.proj.weight, blocks4.6.attn.proj.bias, blocks4.6.norm2.weight, blocks4.6.norm2.bias, blocks4.6.mlp.fc1.weight, blocks4.6.mlp.fc1.bias, blocks4.6.mlp.fc2.weight, blocks4.6.mlp.fc2.bias, norm4.weight, norm4.bias
07/24 15:27:06 - mmpose - INFO - Load pretrained model from /root/mmpose/projects/uniformer/pretrained/uniformer_base_in1k.pth
07/24 15:27:10 - mmengine - INFO - Distributed training is not used, all SyncBatchNorm (SyncBN) layers in the model will be automatically reverted to BatchNormXd layers if they are used.
07/24 15:27:10 - mmengine - INFO - Hooks will be executed in the following order:
before_run:
(VERY_HIGH ) RuntimeInfoHook
(BELOW_NORMAL) LoggerHook
--------------------
before_train:
(VERY_HIGH ) RuntimeInfoHook
(NORMAL ) IterTimerHook
(VERY_LOW ) CheckpointHook
--------------------
before_train_epoch:
(VERY_HIGH ) RuntimeInfoHook
(NORMAL ) IterTimerHook
(NORMAL ) DistSamplerSeedHook
--------------------
before_train_iter:
(VERY_HIGH ) RuntimeInfoHook
(NORMAL ) IterTimerHook
--------------------
after_train_iter:
(VERY_HIGH ) RuntimeInfoHook
(NORMAL ) IterTimerHook
(BELOW_NORMAL) LoggerHook
(LOW ) ParamSchedulerHook
(VERY_LOW ) CheckpointHook
--------------------
after_train_epoch:
(NORMAL ) IterTimerHook
(NORMAL ) SyncBuffersHook
(LOW ) ParamSchedulerHook
(VERY_LOW ) CheckpointHook
--------------------
before_val_epoch:
(NORMAL ) IterTimerHook
(NORMAL ) SyncBuffersHook
--------------------
before_val_iter:
(NORMAL ) IterTimerHook
--------------------
after_val_iter:
(NORMAL ) IterTimerHook
(NORMAL ) PoseVisualizationHook
(BELOW_NORMAL) LoggerHook
--------------------
after_val_epoch:
(VERY_HIGH ) RuntimeInfoHook
(NORMAL ) IterTimerHook
(BELOW_NORMAL) LoggerHook
(LOW ) ParamSchedulerHook
(VERY_LOW ) CheckpointHook
--------------------
after_train:
(VERY_LOW ) CheckpointHook
--------------------
before_test_epoch:
(NORMAL ) IterTimerHook
--------------------
before_test_iter:
(NORMAL ) IterTimerHook
--------------------
after_test_iter:
(NORMAL ) IterTimerHook
(NORMAL ) PoseVisualizationHook
(BELOW_NORMAL) LoggerHook
--------------------
after_test_epoch:
(VERY_HIGH ) RuntimeInfoHook
(NORMAL ) IterTimerHook
(BELOW_NORMAL) LoggerHook
--------------------
after_run:
(BELOW_NORMAL) LoggerHook
--------------------
loading annotations into memory...
Done (t=0.30s)
creating index...
index created!
loading annotations into memory...
Done (t=0.18s)
creating index...
index created!
Loads checkpoint by http backend from path: https://download.openmmlab.com/mmpose/v1/projects/uniformer/top_down_448x320_global_base-a05c185f_20230724.pth
Downloading: "https://download.openmmlab.com/mmpose/v1/projects/uniformer/top_down_448x320_global_base-a05c185f_20230724.pth" to /root/.cache/torch/hub/checkpoints/top_down_448x320_global_base-a05c185f_20230724.pth
100%|██████████████████████████████████████████████████████████████████████████████| 204M/204M [00:11<00:00, 19.1MB/s]
07/24 15:27:30 - mmengine - INFO - Load checkpoint from https://download.openmmlab.com/mmpose/v1/projects/uniformer/top_down_448x320_global_base-a05c185f_20230724.pth
07/24 15:30:33 - mmengine - INFO - Epoch(test) [ 50/407] eta: 0:21:45 time: 3.655887 data_time: 0.280876 memory: 8555
07/24 15:33:34 - mmengine - INFO - Epoch(test) [100/407] eta: 0:18:37 time: 3.622624 data_time: 0.227081 memory: 8555
07/24 15:36:35 - mmengine - INFO - Epoch(test) [150/407] eta: 0:15:33 time: 3.623958 data_time: 0.230486 memory: 8555
07/24 15:39:36 - mmengine - INFO - Epoch(test) [200/407] eta: 0:12:31 time: 3.621793 data_time: 0.223173 memory: 8555
07/24 15:42:37 - mmengine - INFO - Epoch(test) [250/407] eta: 0:09:29 time: 3.621299 data_time: 0.229660 memory: 8555
07/24 15:45:39 - mmengine - INFO - Epoch(test) [300/407] eta: 0:06:28 time: 3.631738 data_time: 0.235520 memory: 8555
07/24 15:48:40 - mmengine - INFO - Epoch(test) [350/407] eta: 0:03:26 time: 3.627835 data_time: 0.227529 memory: 8555
07/24 15:51:42 - mmengine - INFO - Epoch(test) [400/407] eta: 0:00:25 time: 3.627315 data_time: 0.237593 memory: 8555
07/24 15:52:39 - mmengine - INFO - Evaluating CocoMetric...
Loading and preparing results...
DONE (t=3.18s)
creating index...
index created!
Running per image evaluation...
Evaluate annotation type *keypoints*
DONE (t=9.66s).
Accumulating evaluation results...
DONE (t=0.31s).
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets= 20 ] = 0.774
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets= 20 ] = 0.910
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets= 20 ] = 0.844
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets= 20 ] = 0.739
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets= 20 ] = 0.843
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 20 ] = 0.825
Average Recall (AR) @[ IoU=0.50 | area= all | maxDets= 20 ] = 0.949
Average Recall (AR) @[ IoU=0.75 | area= all | maxDets= 20 ] = 0.885
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets= 20 ] = 0.784
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets= 20 ] = 0.884
07/24 15:52:53 - mmengine - INFO - Epoch(test) [407/407] coco/AP: 0.774310 coco/AP .5: 0.910345 coco/AP .75: 0.844331 coco/AP (M): 0.738556 coco/AP (L): 0.842938 coco/AR: 0.824748 coco/AR .5: 0.948992 coco/AR .75: 0.885076 coco/AR (M): 0.784239 coco/AR (L): 0.884244 data_time: 0.235981 time: 3.626385 whereas the accuracy listed in the official UniFormer repo is:
|
Testing result on 07/24 16:02:55 - mmpose - INFO - Use torch.utils.checkpoint: False
07/24 16:02:55 - mmpose - INFO - torch.utils.checkpoint number: (0, 0, 0, 0)
07/24 16:02:55 - mmpose - INFO - Use global window for all blocks in stage3
07/24 16:02:55 - mmpose - INFO - Loads checkpoint by local backend from path: /root/mmpose/projects/uniformer/pretrained/uniformer_small_in1k.pth
07/24 16:02:55 - mmpose - WARNING - The model and loaded state dict do not match exactly
unexpected key in source state_dict: model
missing keys in source state_dict: patch_embed1.norm.weight, patch_embed1.norm.bias, patch_embed1.proj.weight, patch_embed1.proj.bias, patch_embed2.norm.weight, patch_embed2.norm.bias, patch_embed2.proj.weight, patch_embed2.proj.bias, patch_embed3.norm.weight, patch_embed3.norm.bias, patch_embed3.proj.weight, patch_embed3.proj.bias, patch_embed4.norm.weight, patch_embed4.norm.bias, patch_embed4.proj.weight, patch_embed4.proj.bias, blocks1.0.pos_embed.weight, blocks1.0.pos_embed.bias, blocks1.0.norm1.weight, blocks1.0.norm1.bias, blocks1.0.norm1.running_mean, blocks1.0.norm1.running_var, blocks1.0.conv1.weight, blocks1.0.conv1.bias, blocks1.0.conv2.weight, blocks1.0.conv2.bias, blocks1.0.attn.weight, blocks1.0.attn.bias, blocks1.0.norm2.weight, blocks1.0.norm2.bias, blocks1.0.norm2.running_mean, blocks1.0.norm2.running_var, blocks1.0.mlp.fc1.weight, blocks1.0.mlp.fc1.bias, blocks1.0.mlp.fc2.weight, blocks1.0.mlp.fc2.bias, blocks1.1.pos_embed.weight, blocks1.1.pos_embed.bias, blocks1.1.norm1.weight, blocks1.1.norm1.bias, blocks1.1.norm1.running_mean, blocks1.1.norm1.running_var, blocks1.1.conv1.weight, blocks1.1.conv1.bias, blocks1.1.conv2.weight, blocks1.1.conv2.bias, blocks1.1.attn.weight, blocks1.1.attn.bias, blocks1.1.norm2.weight, blocks1.1.norm2.bias, blocks1.1.norm2.running_mean, blocks1.1.norm2.running_var, blocks1.1.mlp.fc1.weight, blocks1.1.mlp.fc1.bias, blocks1.1.mlp.fc2.weight, blocks1.1.mlp.fc2.bias, blocks1.2.pos_embed.weight, blocks1.2.pos_embed.bias, blocks1.2.norm1.weight, blocks1.2.norm1.bias, blocks1.2.norm1.running_mean, blocks1.2.norm1.running_var, blocks1.2.conv1.weight, blocks1.2.conv1.bias, blocks1.2.conv2.weight, blocks1.2.conv2.bias, blocks1.2.attn.weight, blocks1.2.attn.bias, blocks1.2.norm2.weight, blocks1.2.norm2.bias, blocks1.2.norm2.running_mean, blocks1.2.norm2.running_var, blocks1.2.mlp.fc1.weight, blocks1.2.mlp.fc1.bias, blocks1.2.mlp.fc2.weight, blocks1.2.mlp.fc2.bias, norm1.weight, norm1.bias, blocks2.0.pos_embed.weight, blocks2.0.pos_embed.bias, blocks2.0.norm1.weight, blocks2.0.norm1.bias, blocks2.0.norm1.running_mean, blocks2.0.norm1.running_var, blocks2.0.conv1.weight, blocks2.0.conv1.bias, blocks2.0.conv2.weight, blocks2.0.conv2.bias, blocks2.0.attn.weight, blocks2.0.attn.bias, blocks2.0.norm2.weight, blocks2.0.norm2.bias, blocks2.0.norm2.running_mean, blocks2.0.norm2.running_var, blocks2.0.mlp.fc1.weight, blocks2.0.mlp.fc1.bias, blocks2.0.mlp.fc2.weight, blocks2.0.mlp.fc2.bias, blocks2.1.pos_embed.weight, blocks2.1.pos_embed.bias, blocks2.1.norm1.weight, blocks2.1.norm1.bias, blocks2.1.norm1.running_mean, blocks2.1.norm1.running_var, blocks2.1.conv1.weight, blocks2.1.conv1.bias, blocks2.1.conv2.weight, blocks2.1.conv2.bias, blocks2.1.attn.weight, blocks2.1.attn.bias, blocks2.1.norm2.weight, blocks2.1.norm2.bias, blocks2.1.norm2.running_mean, blocks2.1.norm2.running_var, blocks2.1.mlp.fc1.weight, blocks2.1.mlp.fc1.bias, blocks2.1.mlp.fc2.weight, blocks2.1.mlp.fc2.bias, blocks2.2.pos_embed.weight, blocks2.2.pos_embed.bias, blocks2.2.norm1.weight, blocks2.2.norm1.bias, blocks2.2.norm1.running_mean, blocks2.2.norm1.running_var, blocks2.2.conv1.weight, blocks2.2.conv1.bias, blocks2.2.conv2.weight, blocks2.2.conv2.bias, blocks2.2.attn.weight, blocks2.2.attn.bias, blocks2.2.norm2.weight, blocks2.2.norm2.bias, blocks2.2.norm2.running_mean, blocks2.2.norm2.running_var, blocks2.2.mlp.fc1.weight, blocks2.2.mlp.fc1.bias, blocks2.2.mlp.fc2.weight, blocks2.2.mlp.fc2.bias, blocks2.3.pos_embed.weight, blocks2.3.pos_embed.bias, blocks2.3.norm1.weight, blocks2.3.norm1.bias, blocks2.3.norm1.running_mean, blocks2.3.norm1.running_var, blocks2.3.conv1.weight, blocks2.3.conv1.bias, blocks2.3.conv2.weight, blocks2.3.conv2.bias, blocks2.3.attn.weight, blocks2.3.attn.bias, blocks2.3.norm2.weight, blocks2.3.norm2.bias, blocks2.3.norm2.running_mean, blocks2.3.norm2.running_var, blocks2.3.mlp.fc1.weight, blocks2.3.mlp.fc1.bias, blocks2.3.mlp.fc2.weight, blocks2.3.mlp.fc2.bias, norm2.weight, norm2.bias, blocks3.0.pos_embed.weight, blocks3.0.pos_embed.bias, blocks3.0.norm1.weight, blocks3.0.norm1.bias, blocks3.0.attn.qkv.weight, blocks3.0.attn.qkv.bias, blocks3.0.attn.proj.weight, blocks3.0.attn.proj.bias, blocks3.0.norm2.weight, blocks3.0.norm2.bias, blocks3.0.mlp.fc1.weight, blocks3.0.mlp.fc1.bias, blocks3.0.mlp.fc2.weight, blocks3.0.mlp.fc2.bias, blocks3.1.pos_embed.weight, blocks3.1.pos_embed.bias, blocks3.1.norm1.weight, blocks3.1.norm1.bias, blocks3.1.attn.qkv.weight, blocks3.1.attn.qkv.bias, blocks3.1.attn.proj.weight, blocks3.1.attn.proj.bias, blocks3.1.norm2.weight, blocks3.1.norm2.bias, blocks3.1.mlp.fc1.weight, blocks3.1.mlp.fc1.bias, blocks3.1.mlp.fc2.weight, blocks3.1.mlp.fc2.bias, blocks3.2.pos_embed.weight, blocks3.2.pos_embed.bias, blocks3.2.norm1.weight, blocks3.2.norm1.bias, blocks3.2.attn.qkv.weight, blocks3.2.attn.qkv.bias, blocks3.2.attn.proj.weight, blocks3.2.attn.proj.bias, blocks3.2.norm2.weight, blocks3.2.norm2.bias, blocks3.2.mlp.fc1.weight, blocks3.2.mlp.fc1.bias, blocks3.2.mlp.fc2.weight, blocks3.2.mlp.fc2.bias, blocks3.3.pos_embed.weight, blocks3.3.pos_embed.bias, blocks3.3.norm1.weight, blocks3.3.norm1.bias, blocks3.3.attn.qkv.weight, blocks3.3.attn.qkv.bias, blocks3.3.attn.proj.weight, blocks3.3.attn.proj.bias, blocks3.3.norm2.weight, blocks3.3.norm2.bias, blocks3.3.mlp.fc1.weight, blocks3.3.mlp.fc1.bias, blocks3.3.mlp.fc2.weight, blocks3.3.mlp.fc2.bias, blocks3.4.pos_embed.weight, blocks3.4.pos_embed.bias, blocks3.4.norm1.weight, blocks3.4.norm1.bias, blocks3.4.attn.qkv.weight, blocks3.4.attn.qkv.bias, blocks3.4.attn.proj.weight, blocks3.4.attn.proj.bias, blocks3.4.norm2.weight, blocks3.4.norm2.bias, blocks3.4.mlp.fc1.weight, blocks3.4.mlp.fc1.bias, blocks3.4.mlp.fc2.weight, blocks3.4.mlp.fc2.bias, blocks3.5.pos_embed.weight, blocks3.5.pos_embed.bias, blocks3.5.norm1.weight, blocks3.5.norm1.bias, blocks3.5.attn.qkv.weight, blocks3.5.attn.qkv.bias, blocks3.5.attn.proj.weight, blocks3.5.attn.proj.bias, blocks3.5.norm2.weight, blocks3.5.norm2.bias, blocks3.5.mlp.fc1.weight, blocks3.5.mlp.fc1.bias, blocks3.5.mlp.fc2.weight, blocks3.5.mlp.fc2.bias, blocks3.6.pos_embed.weight, blocks3.6.pos_embed.bias, blocks3.6.norm1.weight, blocks3.6.norm1.bias, blocks3.6.attn.qkv.weight, blocks3.6.attn.qkv.bias, blocks3.6.attn.proj.weight, blocks3.6.attn.proj.bias, blocks3.6.norm2.weight, blocks3.6.norm2.bias, blocks3.6.mlp.fc1.weight, blocks3.6.mlp.fc1.bias, blocks3.6.mlp.fc2.weight, blocks3.6.mlp.fc2.bias, blocks3.7.pos_embed.weight, blocks3.7.pos_embed.bias, blocks3.7.norm1.weight, blocks3.7.norm1.bias, blocks3.7.attn.qkv.weight, blocks3.7.attn.qkv.bias, blocks3.7.attn.proj.weight, blocks3.7.attn.proj.bias, blocks3.7.norm2.weight, blocks3.7.norm2.bias, blocks3.7.mlp.fc1.weight, blocks3.7.mlp.fc1.bias, blocks3.7.mlp.fc2.weight, blocks3.7.mlp.fc2.bias, norm3.weight, norm3.bias, blocks4.0.pos_embed.weight, blocks4.0.pos_embed.bias, blocks4.0.norm1.weight, blocks4.0.norm1.bias, blocks4.0.attn.qkv.weight, blocks4.0.attn.qkv.bias, blocks4.0.attn.proj.weight, blocks4.0.attn.proj.bias, blocks4.0.norm2.weight, blocks4.0.norm2.bias, blocks4.0.mlp.fc1.weight, blocks4.0.mlp.fc1.bias, blocks4.0.mlp.fc2.weight, blocks4.0.mlp.fc2.bias, blocks4.1.pos_embed.weight, blocks4.1.pos_embed.bias, blocks4.1.norm1.weight, blocks4.1.norm1.bias, blocks4.1.attn.qkv.weight, blocks4.1.attn.qkv.bias, blocks4.1.attn.proj.weight, blocks4.1.attn.proj.bias, blocks4.1.norm2.weight, blocks4.1.norm2.bias, blocks4.1.mlp.fc1.weight, blocks4.1.mlp.fc1.bias, blocks4.1.mlp.fc2.weight, blocks4.1.mlp.fc2.bias, blocks4.2.pos_embed.weight, blocks4.2.pos_embed.bias, blocks4.2.norm1.weight, blocks4.2.norm1.bias, blocks4.2.attn.qkv.weight, blocks4.2.attn.qkv.bias, blocks4.2.attn.proj.weight, blocks4.2.attn.proj.bias, blocks4.2.norm2.weight, blocks4.2.norm2.bias, blocks4.2.mlp.fc1.weight, blocks4.2.mlp.fc1.bias, blocks4.2.mlp.fc2.weight, blocks4.2.mlp.fc2.bias, norm4.weight, norm4.bias
07/24 16:02:55 - mmpose - INFO - Load pretrained model from /root/mmpose/projects/uniformer/pretrained/uniformer_small_in1k.pth
07/24 16:02:59 - mmengine - INFO - Distributed training is not used, all SyncBatchNorm (SyncBN) layers in the model will be automatically reverted to BatchNormXd layers if they are used.
07/24 16:02:59 - mmengine - INFO - Hooks will be executed in the following order:
before_run:
(VERY_HIGH ) RuntimeInfoHook
(BELOW_NORMAL) LoggerHook
--------------------
before_train:
(VERY_HIGH ) RuntimeInfoHook
(NORMAL ) IterTimerHook
(VERY_LOW ) CheckpointHook
--------------------
before_train_epoch:
(VERY_HIGH ) RuntimeInfoHook
(NORMAL ) IterTimerHook
(NORMAL ) DistSamplerSeedHook
--------------------
before_train_iter:
(VERY_HIGH ) RuntimeInfoHook
(NORMAL ) IterTimerHook
--------------------
after_train_iter:
(VERY_HIGH ) RuntimeInfoHook
(NORMAL ) IterTimerHook
(BELOW_NORMAL) LoggerHook
(LOW ) ParamSchedulerHook
(VERY_LOW ) CheckpointHook
--------------------
after_train_epoch:
(NORMAL ) IterTimerHook
(NORMAL ) SyncBuffersHook
(LOW ) ParamSchedulerHook
(VERY_LOW ) CheckpointHook
--------------------
before_val_epoch:
(NORMAL ) IterTimerHook
(NORMAL ) SyncBuffersHook
--------------------
before_val_iter:
(NORMAL ) IterTimerHook
--------------------
after_val_iter:
(NORMAL ) IterTimerHook
(NORMAL ) PoseVisualizationHook
(BELOW_NORMAL) LoggerHook
--------------------
after_val_epoch:
(VERY_HIGH ) RuntimeInfoHook
(NORMAL ) IterTimerHook
(BELOW_NORMAL) LoggerHook
(LOW ) ParamSchedulerHook
(VERY_LOW ) CheckpointHook
--------------------
after_train:
(VERY_LOW ) CheckpointHook
--------------------
before_test_epoch:
(NORMAL ) IterTimerHook
--------------------
before_test_iter:
(NORMAL ) IterTimerHook
--------------------
after_test_iter:
(NORMAL ) IterTimerHook
(NORMAL ) PoseVisualizationHook
(BELOW_NORMAL) LoggerHook
--------------------
after_test_epoch:
(VERY_HIGH ) RuntimeInfoHook
(NORMAL ) IterTimerHook
(BELOW_NORMAL) LoggerHook
--------------------
after_run:
(BELOW_NORMAL) LoggerHook
--------------------
loading annotations into memory...
Done (t=0.29s)
creating index...
index created!
loading annotations into memory...
Done (t=0.18s)
creating index...
index created!
Loads checkpoint by http backend from path: https://download.openmmlab.com/mmpose/v1/projects/uniformer/top_down_448x320_global_small-18b760de_20230724.pth
Downloading: "https://download.openmmlab.com/mmpose/v1/projects/uniformer/top_down_448x320_global_small-18b760de_20230724.pth" to /root/.cache/torch/hub/checkpoints/top_down_448x320_global_small-18b760de_20230724.pth
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 96.3M/96.3M [00:05<00:00, 19.8MB/s]
07/24 16:03:13 - mmengine - INFO - Load checkpoint from https://download.openmmlab.com/mmpose/v1/projects/uniformer/top_down_448x320_global_small-18b760de_20230724.pth
07/24 16:05:00 - mmengine - INFO - Epoch(test) [ 50/407] eta: 0:12:44 time: 2.140249 data_time: 0.281717 memory: 8446
07/24 16:06:45 - mmengine - INFO - Epoch(test) [100/407] eta: 0:10:51 time: 2.104473 data_time: 0.235087 memory: 8446
07/24 16:08:30 - mmengine - INFO - Epoch(test) [150/407] eta: 0:09:03 time: 2.101846 data_time: 0.232801 memory: 8446
07/24 16:10:16 - mmengine - INFO - Epoch(test) [200/407] eta: 0:07:17 time: 2.103954 data_time: 0.233861 memory: 8446
07/24 16:12:01 - mmengine - INFO - Epoch(test) [250/407] eta: 0:05:31 time: 2.114850 data_time: 0.245181 memory: 8446
07/24 16:13:47 - mmengine - INFO - Epoch(test) [300/407] eta: 0:03:45 time: 2.105382 data_time: 0.237319 memory: 8446
07/24 16:15:32 - mmengine - INFO - Epoch(test) [350/407] eta: 0:02:00 time: 2.099765 data_time: 0.229156 memory: 8446
07/24 16:17:17 - mmengine - INFO - Epoch(test) [400/407] eta: 0:00:14 time: 2.104526 data_time: 0.233125 memory: 8446
07/24 16:18:04 - mmengine - INFO - Evaluating CocoMetric...
Loading and preparing results...
DONE (t=3.50s)
creating index...
index created!
Running per image evaluation...
Evaluate annotation type *keypoints*
DONE (t=9.13s).
Accumulating evaluation results...
DONE (t=0.32s).
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets= 20 ] = 0.762
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets= 20 ] = 0.906
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets= 20 ] = 0.832
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets= 20 ] = 0.725
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets= 20 ] = 0.834
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 20 ] = 0.814
Average Recall (AR) @[ IoU=0.50 | area= all | maxDets= 20 ] = 0.944
Average Recall (AR) @[ IoU=0.75 | area= all | maxDets= 20 ] = 0.876
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets= 20 ] = 0.772
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets= 20 ] = 0.877
07/24 16:18:17 - mmengine - INFO - Epoch(test) [407/407] coco/AP: 0.762134 coco/AP .5: 0.906027 coco/AP .75: 0.832140 coco/AP (M): 0.725317 coco/AP (L): 0.833510 coco/AR: 0.814421 coco/AR .5: 0.944112 coco/AR .75: 0.876417 coco/AR (M): 0.772111 coco/AR (L): 0.876886 data_time: 0.240286 time: 2.107453 whereas the accuracy listed in the official UniFormer repo is:
|
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
LGTM
* update * [Fix] Fix HRFormer log link * [Feature] Add Application 'Just dance' (#2528) * [Docs] Add advanced tutorial of implement new model. (#2539) * [Doc] Update img (#2541) * [Feature] Support MotionBERT (#2482) * [Fix] Fix demo scripts (#2542) * [Fix] Fix Pose3dInferencer keypoint shape bug (#2543) * [Enhance] Add notifications when saving visualization results (#2545) * [Fix] MotionBERT training and flip-test (#2548) * [Docs] Enhance docs (#2555) * [Docs] Fix links in doc (#2557) * [Docs] add details (#2558) * [Refactor] 3d human pose demo (#2554) * [Docs] Update MotionBERT docs (#2559) * [Refactor] Update the arguments of 3d inferencer to align with the demo script (#2561) * [Enhance] Combined dataset supports custom sampling ratio (#2562) * [Docs] Add MultiSourceSampler docs (#2563) * [Doc] Refine docs (#2564) * [Feature][MMSIG] Add UniFormer Pose Estimation to Projects folder (#2501) * [Fix] Check the compatibility of inferencer's input/output (#2567) * [Fix]Fix 3d visualization (#2565) * [Feature] Add bear example in just dance (#2568) * [Doc] Add example and openxlab link for just dance (#2571) * [Fix] Configs' paths of VideoPose3d (#2572) * [Docs] update docs (#2573) * [Fix] Fix new config bug in train.py (#2575) * [Fix] Configs' of MotionBERT (#2574) * [Enhance] Normalization option in 3d human pose demo and inferencer (#2576) * [Fix] Fix the incorrect labels for training vis_head with combined datasets (#2550) * [Enhance] Enhance 3dpose demo and docs (#2578) * [Docs] Enhance Codecs documents (#2580) * [Feature] Add DWPose distilled WholeBody RTMPose models (#2581) * [Docs] Add deployment docs (#2582) * [Fix] Refine 3dpose (#2583) * [Fix] Fix config typo in rtmpose-x (#2585) * [Fix] Fix 3d inferencer (#2593) * [Feature] Add a simple visualize api (#2596) * [Feature][MMSIG] Support badcase analyze in test (#2584) * [Fix] fix bug in flip_bbox with xyxy format (#2598) * [Feature] Support ubody dataset (2d keypoints) (#2588) * [Fix] Fix visualization bug in 3d pose (#2594) * [Fix] Remove use-multi-frames option (#2601) * [Enhance] Update demos (#2602) * [Enhance] wholebody support openpose style visualization (#2609) * [Docs] Documentation regarding 3d pose (#2599) * [CodeCamp2023-533] Migration Deepfashion topdown heatmap algorithms to 1.x (#2597) * [Fix] fix badcase hook (#2616) * [Fix] Update dataset mim downloading source to OpenXLab (#2614) * [Docs] Update docs structure (#2617) * [Docs] Refine Docs (#2619) * [Fix] Fix numpy error (#2626) * [Docs] Update error info and docs (#2624) * [Fix] Fix inferencer argument name (#2627) * [Fix] fix links for coco+aic hrnet (#2630) * [Fix] fix a bug when visualize keypoint indices (#2631) * [Docs] Update rtmpose docs (#2642) * [Docs] update README.md (#2647) * [Docs] Add onnx of RTMPose models (#2656) * [Docs] Fix mmengine link (#2655) * [Docs] Update QR code (#2653) * [Feature] Add DWPose (#2643) * [Refactor] Reorganize distillers (#2658) * [CodeCamp2023-259]Document Writing: Advanced Tutorial - Custom Data Augmentation (#2605) * [Docs] Fix installation docs(#2668) * [Fix] Fix expired links in README (#2673) * [Feature] Support multi-dataset evaluation (#2674) * [Refactor] Specify labels to pack in codecs (#2659) * [Refactor] update mapping tables (#2676) * [Fix] fix link (#2677) * [Enhance] Enable CocoMetric to get ann_file from MessageHub (#2678) * [Fix] fix vitpose pretrained ckpts (#2687) * [Refactor] Refactor YOLOX-Pose into mmpose core package (#2620) * [Fix] Fix typo in COCOMetric(#2691) * [Fix] Fix bug raised by changing bbox_center to input_center (#2693) * [Feature] Surpport EDPose for inference(#2688) * [Refactor] Internet for 3d hand pose estimation (#2632) * [Fix] Change test batch_size of edpose to 1 (#2701) * [Docs] Add OpenXLab Badge (#2698) * [Doc] fix inferencer doc (#2702) * [Docs] Refine dataset config tutorial (#2707) * [Fix] modify yoloxpose test settings (#2706) * [Fix] add compatibility for argument `return_datasample` (#2708) * [Feature] Support ubody3d dataset (#2699) * [Fix] Fix 3d inferencer (#2709) * [Fix] Move ubody3d dataset to wholebody3d (#2712) * [Refactor] Refactor config and dataset file structures (#2711) * [Fix] give more clues when loading img failed (#2714) * [Feature] Add demo script for 3d hand pose (#2710) * [Fix] Fix Internet demo (#2717) * [codecamp: mmpose-315] 300W-LP data set support (#2716) * [Fix] Fix the typo in YOLOX-Pose (#2719) * [Feature] Add detectors trained on humanart (#2724) * [Feature] Add RTMPose-Wholebody (#2721) * [Doc] Fix github action badge in README (#2727) * [Fix] Fix bug of dwpose (#2728) * [Feature] Support hand3d inferencer (#2729) * [Fix] Fix new config of RTMW (#2731) * [Fix] Align visualization color of 3d demo (#2734) * [Fix] Refine h36m data loading and add head_size to PackPoseInputs (#2735) * [Refactor] Align test accuracy for AE (#2737) * [Refactor] Separate evaluation mappings from KeypointConverter (#2738) * [Fix] MotionbertLabel codec (#2739) * [Fix] Fix mask shape (#2740) * [Feature] Add training datasets of RTMW (#2743) * [Doc] update RTMPose README (#2744) * [Fix] skip warnings in demo (#2746) * Bump 1.2 (#2748) * add comments in dekr configs (#2751) --------- Co-authored-by: Peng Lu <penglu2097@gmail.com> Co-authored-by: Yifan Lareina WU <mhsj16lareina@gmail.com> Co-authored-by: Xin Li <7219519+xin-li-67@users.noreply.github.com> Co-authored-by: Indigo6 <40358785+Indigo6@users.noreply.github.com> Co-authored-by: 谢昕辰 <xiexinch@outlook.com> Co-authored-by: tpoisonooo <khj.application@aliyun.com> Co-authored-by: zhengjie.xu <jerryxuzhengjie@gmail.com> Co-authored-by: Mesopotamia <54797851+yzd-v@users.noreply.github.com> Co-authored-by: chaodyna <li0331_1@163.com> Co-authored-by: lwttttt <85999869+lwttttt@users.noreply.github.com> Co-authored-by: Kanji Yomoda <Kanji.yy@gmail.com> Co-authored-by: LiuYi-Up <73060646+LiuYi-Up@users.noreply.github.com> Co-authored-by: ZhaoQiiii <102809799+ZhaoQiiii@users.noreply.github.com> Co-authored-by: Yang-ChangHui <71805205+Yang-Changhui@users.noreply.github.com> Co-authored-by: Xuan Ju <89566272+juxuan27@users.noreply.github.com>
Motivation
MMSIG task
Modification
projects/uniformer/*
BC-breaking (Optional)
Use cases (Optional)
Checklist
Before PR:
After PR: