Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

【Hackathon 5th No.96】add paddle unstack op #20080

Merged
merged 7 commits into from
Nov 22, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
36 changes: 36 additions & 0 deletions src/frontends/paddle/src/op/unstack.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,36 @@
// Copyright (C) 2018-2023 Intel Corporation
// SPDX-License-Identifier: Apache-2.0
//

#include "default_opset.hpp"
#include "openvino/frontend/paddle/node_context.hpp"

namespace ov {
namespace frontend {
namespace paddle {
namespace op {
NamedOutputs unstack(const NodeContext& node) {
auto data = node.get_input("X");
auto input_shape = data.get_partial_shape();
PADDLE_OP_CHECK(node, input_shape.rank().is_static(), "rank of input data should be static");
auto dim = node.get_attribute<int32_t>("axis", 0);
if (dim < 0) {
dim = dim + static_cast<int32_t>(input_shape.rank().get_length());
}
auto axis = default_opset::Constant::create(element::i32, {}, {dim});
auto shape = input_shape.get_shape();
auto splits = std::make_shared<default_opset::Split>(data, axis, shape.at(dim));
auto split_outputs = splits->outputs();
NamedOutputs named_outputs;
auto out_names = node.get_output_names();
auto it = std::find(out_names.begin(), out_names.end(), "Y");
PADDLE_OP_CHECK(node, it != out_names.end(), "Expected output not found");
for (const auto& split_output : split_outputs) {
named_outputs[*it].push_back(std::make_shared<default_opset::Squeeze>(split_output, axis));
}
return named_outputs;
}
} // namespace op
} // namespace paddle
} // namespace frontend
} // namespace ov
2 changes: 2 additions & 0 deletions src/frontends/paddle/src/op_table.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -120,6 +120,7 @@ OP_CONVERTER(top_k_v2);
OP_CONVERTER(transpose2);
OP_CONVERTER(trilinear_interp_v2);
OP_CONVERTER(unsqueeze);
OP_CONVERTER(unstack);
OP_CONVERTER(where);
OP_CONVERTER(while_);
OP_CONVERTER(write_to_array);
Expand Down Expand Up @@ -249,6 +250,7 @@ std::map<std::string, CreatorFunction> get_supported_ops() {
{"transpose2", op::transpose2},
{"trilinear_interp_v2", op::trilinear_interp_v2},
{"unsqueeze2", op::unsqueeze},
{"unstack", op::unstack},
{"where", op::where},
{"while", op::while_},
{"write_to_array", op::write_to_array},
Expand Down
5 changes: 5 additions & 0 deletions src/frontends/paddle/tests/op_fuzzy.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -565,6 +565,11 @@ static const std::vector<std::string> models{
std::string("trilinear_upsample_scales2/trilinear_upsample_scales2.pdmodel"),
std::string("trilinear_upsample_true_0/trilinear_upsample_true_0.pdmodel"),
std::string("unsqueeze"),
std::string("unstack_1"),
std::string("unstack_2"),
std::string("unstack_3"),
std::string("unstack_4"),
std::string("unstack_5"),
std::string("where_1"),
std::string("where_2"),
std::string("where_3"),
Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,46 @@
# Copyright (C) 2018-2023 Intel Corporation
# SPDX-License-Identifier: Apache-2.0

#
# unstack paddle model generator
#
import paddle
import numpy as np
from save_model import saveModel
import sys


def unstack(name: str, x, axis):
paddle.enable_static()

with paddle.static.program_guard(paddle.static.Program(), paddle.static.Program()):
x_node = paddle.static.data(name="x", shape=x.shape, dtype=x.dtype)
out = paddle.unstack(x_node, axis) if axis is not None else paddle.unstack(x_node)
place = paddle.CPUPlace()
exe = paddle.static.Executor(place)
exe.run(paddle.static.default_startup_program())
outs = exe.run(feed={"x": x}, fetch_list=[out])
saveModel(name, exe, feedkeys=['x'], fetchlist=out, inputs=[x], outputs=outs, target_dir=sys.argv[1])

return outs


def main():
dtype = np.float32
x = np.random.randn(2, 3, 4).astype(dtype)
unstack(name='unstack_1', x=x, axis=0)

dtype = np.int32
x = np.random.randn(2, 3, 4).astype(dtype)
unstack(name='unstack_2', x=x, axis=1)

dtype = np.int64
x = np.random.randn(3, 4).astype(dtype)
unstack(name='unstack_3', x=x, axis=-1)
unstack(name='unstack_4', x=x, axis=None)

x = np.random.randn(2, 1, 4).astype(dtype)
unstack(name='unstack_5', x=x, axis=0)

liubo-intel marked this conversation as resolved.
Show resolved Hide resolved
if __name__ == "__main__":
main()
Loading