-
-
Notifications
You must be signed in to change notification settings - Fork 18.1k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Strange behaviour when trying to create a series from two columns of a dataframe with apply(tuple, axis=1) #17348
Comments
@daltschu : Thanks for reporting this! Indeed, that looks pretty buggy to me. Investigation and subsequent PR to patch is welcome! |
this is a duplicate of #16321, #15628 When you are returning a list-like it is re-converted to columns if the len matches the input shape. Its not really the best to do this, but not inferring is worse. not really sure datetimes make this different. you are welcome to have a look to see if you can make this better / more consistent. |
closes pandas-dev#16353 closes pandas-dev#17348 closes pandas-dev#17437 closes pandas-dev#18573 closes pandas-dev#17970 closes pandas-dev#17892 closes pandas-dev#17602
closes pandas-dev#16353 closes pandas-dev#17348 closes pandas-dev#17437 closes pandas-dev#18573 closes pandas-dev#17970 closes pandas-dev#17892 closes pandas-dev#17602
closes pandas-dev#16353 closes pandas-dev#17348 closes pandas-dev#17437 closes pandas-dev#18573 closes pandas-dev#17970 closes pandas-dev#17892 closes pandas-dev#17602
closes pandas-dev#16353 closes pandas-dev#17348 closes pandas-dev#17437 closes pandas-dev#18573 closes pandas-dev#17970 closes pandas-dev#17892 closes pandas-dev#17602
closes pandas-dev#16353 closes pandas-dev#17348 closes pandas-dev#17437 closes pandas-dev#18573 closes pandas-dev#17970 closes pandas-dev#17892 closes pandas-dev#17602
closes pandas-dev#16353 closes pandas-dev#17348 closes pandas-dev#17437 closes pandas-dev#18573 closes pandas-dev#17970 closes pandas-dev#17892 closes pandas-dev#17602
closes pandas-dev#16353 closes pandas-dev#17348 closes pandas-dev#17437 closes pandas-dev#18573 closes pandas-dev#17970 closes pandas-dev#17892 closes pandas-dev#17602 closes pandas-dev#18775
closes pandas-dev#16353 closes pandas-dev#17348 closes pandas-dev#17437 closes pandas-dev#18573 closes pandas-dev#17970 closes pandas-dev#17892 closes pandas-dev#17602 closes pandas-dev#18775
closes pandas-dev#16353 closes pandas-dev#17348 closes pandas-dev#17437 closes pandas-dev#18573 closes pandas-dev#17970 closes pandas-dev#17892 closes pandas-dev#17602 closes pandas-dev#18775
closes pandas-dev#16353 closes pandas-dev#17348 closes pandas-dev#17437 closes pandas-dev#18573 closes pandas-dev#17970 closes pandas-dev#17892 closes pandas-dev#17602 closes pandas-dev#18775 closes pandas-dev#18901 closes pandas-dev#18919
closes pandas-dev#16353 closes pandas-dev#17348 closes pandas-dev#17437 closes pandas-dev#18573 closes pandas-dev#17970 closes pandas-dev#17892 closes pandas-dev#17602 closes pandas-dev#18775 closes pandas-dev#18901 closes pandas-dev#18919
closes pandas-dev#16353 closes pandas-dev#17348 closes pandas-dev#17437 closes pandas-dev#18573 closes pandas-dev#17970 closes pandas-dev#17892 closes pandas-dev#17602 closes pandas-dev#18775 closes pandas-dev#18901 closes pandas-dev#18919
closes pandas-dev#16353 closes pandas-dev#17348 closes pandas-dev#17437 closes pandas-dev#18573 closes pandas-dev#17970 closes pandas-dev#17892 closes pandas-dev#17602 closes pandas-dev#18775 closes pandas-dev#18901 closes pandas-dev#18919
closes pandas-dev#16353 closes pandas-dev#17348 closes pandas-dev#17437 closes pandas-dev#18573 closes pandas-dev#17970 closes pandas-dev#17892 closes pandas-dev#17602 closes pandas-dev#18775 closes pandas-dev#18901 closes pandas-dev#18919
closes pandas-dev#16353 closes pandas-dev#17348 closes pandas-dev#17437 closes pandas-dev#18573 closes pandas-dev#17970 closes pandas-dev#17892 closes pandas-dev#17602 closes pandas-dev#18775 closes pandas-dev#18901 closes pandas-dev#18919
closes pandas-dev#16353 closes pandas-dev#17348 closes pandas-dev#17437 closes pandas-dev#18573 closes pandas-dev#17970 closes pandas-dev#17892 closes pandas-dev#17602 closes pandas-dev#18775 closes pandas-dev#18901 closes pandas-dev#18919
closes pandas-dev#16353 closes pandas-dev#17348 closes pandas-dev#17437 closes pandas-dev#18573 closes pandas-dev#17970 closes pandas-dev#17892 closes pandas-dev#17602 closes pandas-dev#18775 closes pandas-dev#18901 closes pandas-dev#18919
closes pandas-dev#16353 closes pandas-dev#17348 closes pandas-dev#17437 closes pandas-dev#18573 closes pandas-dev#17970 closes pandas-dev#17892 closes pandas-dev#17602 closes pandas-dev#18775 closes pandas-dev#18901 closes pandas-dev#18919
closes pandas-dev#16353 closes pandas-dev#17348 closes pandas-dev#17437 closes pandas-dev#18573 closes pandas-dev#17970 closes pandas-dev#17892 closes pandas-dev#17602 closes pandas-dev#18775 closes pandas-dev#18901 closes pandas-dev#18919
closes pandas-dev#16353 closes pandas-dev#17348 closes pandas-dev#17437 closes pandas-dev#18573 closes pandas-dev#17970 closes pandas-dev#17892 closes pandas-dev#17602 closes pandas-dev#18775 closes pandas-dev#18901 closes pandas-dev#18919
closes pandas-dev#16353 closes pandas-dev#17348 closes pandas-dev#17437 closes pandas-dev#18573 closes pandas-dev#17970 closes pandas-dev#17892 closes pandas-dev#17602 closes pandas-dev#18775 closes pandas-dev#18901 closes pandas-dev#18919
closes pandas-dev#16353 closes pandas-dev#17348 closes pandas-dev#17437 closes pandas-dev#18573 closes pandas-dev#17970 closes pandas-dev#17892 closes pandas-dev#17602 closes pandas-dev#18775 closes pandas-dev#18901 closes pandas-dev#18919
closes pandas-dev#16353 closes pandas-dev#17348 closes pandas-dev#17437 closes pandas-dev#18573 closes pandas-dev#17970 closes pandas-dev#17892 closes pandas-dev#17602 closes pandas-dev#18775 closes pandas-dev#18901 closes pandas-dev#18919
closes pandas-dev#16353 closes pandas-dev#17348 closes pandas-dev#17437 closes pandas-dev#18573 closes pandas-dev#17970 closes pandas-dev#17892 closes pandas-dev#17602 closes pandas-dev#18775 closes pandas-dev#18901 closes pandas-dev#18919
closes pandas-dev#16353 closes pandas-dev#17348 closes pandas-dev#17437 closes pandas-dev#18573 closes pandas-dev#17970 closes pandas-dev#17892 closes pandas-dev#17602 closes pandas-dev#18775 closes pandas-dev#18901 closes pandas-dev#18919
closes pandas-dev#16353 closes pandas-dev#17348 closes pandas-dev#17437 closes pandas-dev#18573 closes pandas-dev#17970 closes pandas-dev#17892 closes pandas-dev#17602 closes pandas-dev#18775 closes pandas-dev#18901 closes pandas-dev#18919
closes pandas-dev#16353 closes pandas-dev#17348 closes pandas-dev#17437 closes pandas-dev#18573 closes pandas-dev#17970 closes pandas-dev#17892 closes pandas-dev#17602 closes pandas-dev#18775 closes pandas-dev#18901 closes pandas-dev#18919
…-dev#18577) closes pandas-dev#16353 closes pandas-dev#17348 closes pandas-dev#17437 closes pandas-dev#18573 closes pandas-dev#17970 closes pandas-dev#17892 closes pandas-dev#17602 closes pandas-dev#18775 closes pandas-dev#18901 closes pandas-dev#18919
Unintended behaviour of pandas happens when one tries to create a series applying
tuple (or list) to two columns of a dataframe, one of which consists of timestamps:
d
let's try first with columns 'a'and 'b':
So far, everything is fine. Now let's do it with 'a' and 'ts':
Oops.
It's easy to find a way around this, by coating the timestamps before apply and uncoating after:
It would be nice if this strange behaviour was corrected.
The text was updated successfully, but these errors were encountered: