-
-
Notifications
You must be signed in to change notification settings - Fork 18.1k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
DataFrame.apply returns NaN if DataFrame contains datetime column #18775
Comments
Just wanted to mention that Pandas is a great tool and you are doing awesome work. Thanks. |
Thanks for the report, this should fall under @jreback's PR at #18577 (in progress) That said, with my last pull of it the output is inferred as completely empty - some discussion over there on exactly what kwargs should be used to control this. pd.__version__
Out[7]: '0.22.0.dev0+310.gf6f0371'
A.apply(lambda x: {}, axis=1)
Out[5]:
Empty DataFrame
Columns: []
Index: [0, 1, 2] |
yep, this is already covered by #18577, added as an additional test. |
closes pandas-dev#16353 closes pandas-dev#17348 closes pandas-dev#17437 closes pandas-dev#18573 closes pandas-dev#17970 closes pandas-dev#17892 closes pandas-dev#17602 closes pandas-dev#18775
Thanks for the quick feedback. Looking forward to working with the fixed version. |
closes pandas-dev#16353 closes pandas-dev#17348 closes pandas-dev#17437 closes pandas-dev#18573 closes pandas-dev#17970 closes pandas-dev#17892 closes pandas-dev#17602 closes pandas-dev#18775
closes pandas-dev#16353 closes pandas-dev#17348 closes pandas-dev#17437 closes pandas-dev#18573 closes pandas-dev#17970 closes pandas-dev#17892 closes pandas-dev#17602 closes pandas-dev#18775
closes pandas-dev#16353 closes pandas-dev#17348 closes pandas-dev#17437 closes pandas-dev#18573 closes pandas-dev#17970 closes pandas-dev#17892 closes pandas-dev#17602 closes pandas-dev#18775 closes pandas-dev#18901 closes pandas-dev#18919
closes pandas-dev#16353 closes pandas-dev#17348 closes pandas-dev#17437 closes pandas-dev#18573 closes pandas-dev#17970 closes pandas-dev#17892 closes pandas-dev#17602 closes pandas-dev#18775 closes pandas-dev#18901 closes pandas-dev#18919
closes pandas-dev#16353 closes pandas-dev#17348 closes pandas-dev#17437 closes pandas-dev#18573 closes pandas-dev#17970 closes pandas-dev#17892 closes pandas-dev#17602 closes pandas-dev#18775 closes pandas-dev#18901 closes pandas-dev#18919
closes pandas-dev#16353 closes pandas-dev#17348 closes pandas-dev#17437 closes pandas-dev#18573 closes pandas-dev#17970 closes pandas-dev#17892 closes pandas-dev#17602 closes pandas-dev#18775 closes pandas-dev#18901 closes pandas-dev#18919
closes pandas-dev#16353 closes pandas-dev#17348 closes pandas-dev#17437 closes pandas-dev#18573 closes pandas-dev#17970 closes pandas-dev#17892 closes pandas-dev#17602 closes pandas-dev#18775 closes pandas-dev#18901 closes pandas-dev#18919
closes pandas-dev#16353 closes pandas-dev#17348 closes pandas-dev#17437 closes pandas-dev#18573 closes pandas-dev#17970 closes pandas-dev#17892 closes pandas-dev#17602 closes pandas-dev#18775 closes pandas-dev#18901 closes pandas-dev#18919
closes pandas-dev#16353 closes pandas-dev#17348 closes pandas-dev#17437 closes pandas-dev#18573 closes pandas-dev#17970 closes pandas-dev#17892 closes pandas-dev#17602 closes pandas-dev#18775 closes pandas-dev#18901 closes pandas-dev#18919
closes pandas-dev#16353 closes pandas-dev#17348 closes pandas-dev#17437 closes pandas-dev#18573 closes pandas-dev#17970 closes pandas-dev#17892 closes pandas-dev#17602 closes pandas-dev#18775 closes pandas-dev#18901 closes pandas-dev#18919
closes pandas-dev#16353 closes pandas-dev#17348 closes pandas-dev#17437 closes pandas-dev#18573 closes pandas-dev#17970 closes pandas-dev#17892 closes pandas-dev#17602 closes pandas-dev#18775 closes pandas-dev#18901 closes pandas-dev#18919
closes pandas-dev#16353 closes pandas-dev#17348 closes pandas-dev#17437 closes pandas-dev#18573 closes pandas-dev#17970 closes pandas-dev#17892 closes pandas-dev#17602 closes pandas-dev#18775 closes pandas-dev#18901 closes pandas-dev#18919
closes pandas-dev#16353 closes pandas-dev#17348 closes pandas-dev#17437 closes pandas-dev#18573 closes pandas-dev#17970 closes pandas-dev#17892 closes pandas-dev#17602 closes pandas-dev#18775 closes pandas-dev#18901 closes pandas-dev#18919
closes pandas-dev#16353 closes pandas-dev#17348 closes pandas-dev#17437 closes pandas-dev#18573 closes pandas-dev#17970 closes pandas-dev#17892 closes pandas-dev#17602 closes pandas-dev#18775 closes pandas-dev#18901 closes pandas-dev#18919
closes pandas-dev#16353 closes pandas-dev#17348 closes pandas-dev#17437 closes pandas-dev#18573 closes pandas-dev#17970 closes pandas-dev#17892 closes pandas-dev#17602 closes pandas-dev#18775 closes pandas-dev#18901 closes pandas-dev#18919
closes pandas-dev#16353 closes pandas-dev#17348 closes pandas-dev#17437 closes pandas-dev#18573 closes pandas-dev#17970 closes pandas-dev#17892 closes pandas-dev#17602 closes pandas-dev#18775 closes pandas-dev#18901 closes pandas-dev#18919
closes pandas-dev#16353 closes pandas-dev#17348 closes pandas-dev#17437 closes pandas-dev#18573 closes pandas-dev#17970 closes pandas-dev#17892 closes pandas-dev#17602 closes pandas-dev#18775 closes pandas-dev#18901 closes pandas-dev#18919
closes pandas-dev#16353 closes pandas-dev#17348 closes pandas-dev#17437 closes pandas-dev#18573 closes pandas-dev#17970 closes pandas-dev#17892 closes pandas-dev#17602 closes pandas-dev#18775 closes pandas-dev#18901 closes pandas-dev#18919
closes pandas-dev#16353 closes pandas-dev#17348 closes pandas-dev#17437 closes pandas-dev#18573 closes pandas-dev#17970 closes pandas-dev#17892 closes pandas-dev#17602 closes pandas-dev#18775 closes pandas-dev#18901 closes pandas-dev#18919
closes pandas-dev#16353 closes pandas-dev#17348 closes pandas-dev#17437 closes pandas-dev#18573 closes pandas-dev#17970 closes pandas-dev#17892 closes pandas-dev#17602 closes pandas-dev#18775 closes pandas-dev#18901 closes pandas-dev#18919
…-dev#18577) closes pandas-dev#16353 closes pandas-dev#17348 closes pandas-dev#17437 closes pandas-dev#18573 closes pandas-dev#17970 closes pandas-dev#17892 closes pandas-dev#17602 closes pandas-dev#18775 closes pandas-dev#18901 closes pandas-dev#18919
Code Sample, a copy-pastable example if possible
Problem description
The last line returns a dataframe with all entries replaced by NaN. This only happens if the following two conditions are both satisfied:
datetime64[ns]
is present in the dataframe (in the above example the column with namedate
)When using a Dataframe without the datetime column, the code returns the expected result (for the above result a
pd.Series
with empty dictionaries).Why this is a (significant) problem:
Output of apply depends on presence of another column that is not used by applied function.
Potentially related:
I tried to search for a similar issues and found the already closed issues
However, these issues are fixed and already closed since 2015.
Expected Output
the expected output can be easily produced by removing the 6th line (
A["date"] = ...
)Output of
pd.show_versions()
Checked with newest version of pandas:
[paste the output of
pd.show_versions()
here below this line]The text was updated successfully, but these errors were encountered: