Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

CLN: ASV remove uncessary selfs and add setups #18575

Merged
merged 1 commit into from
Nov 30, 2017
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
6 changes: 2 additions & 4 deletions asv_bench/benchmarks/algorithms.py
Original file line number Diff line number Diff line change
Expand Up @@ -11,6 +11,8 @@
except:
pass

from .pandas_vb_common import setup # noqa


class Factorize(object):

Expand All @@ -21,7 +23,6 @@ class Factorize(object):

def setup(self, sort):
N = 10**5
np.random.seed(1234)
self.int_idx = pd.Int64Index(np.arange(N).repeat(5))
self.float_idx = pd.Float64Index(np.random.randn(N).repeat(5))
self.string_idx = tm.makeStringIndex(N)
Expand All @@ -45,7 +46,6 @@ class Duplicated(object):

def setup(self, keep):
N = 10**5
np.random.seed(1234)
self.int_idx = pd.Int64Index(np.arange(N).repeat(5))
self.float_idx = pd.Float64Index(np.random.randn(N).repeat(5))
self.string_idx = tm.makeStringIndex(N)
Expand Down Expand Up @@ -79,7 +79,6 @@ class Match(object):
goal_time = 0.2

def setup(self):
np.random.seed(1234)
self.uniques = tm.makeStringIndex(1000).values
self.all = self.uniques.repeat(10)

Expand All @@ -92,7 +91,6 @@ class Hashing(object):
goal_time = 0.2

def setup_cache(self):
np.random.seed(1234)
N = 10**5

df = pd.DataFrame(
Expand Down
17 changes: 7 additions & 10 deletions asv_bench/benchmarks/binary_ops.py
Original file line number Diff line number Diff line change
Expand Up @@ -6,6 +6,8 @@
except ImportError:
import pandas.computation.expressions as expr

from .pandas_vb_common import setup # noqa


class Ops(object):

Expand All @@ -15,7 +17,6 @@ class Ops(object):
param_names = ['use_numexpr', 'threads']

def setup(self, use_numexpr, threads):
np.random.seed(1234)
self.df = DataFrame(np.random.randn(20000, 100))
self.df2 = DataFrame(np.random.randn(20000, 100))

Expand Down Expand Up @@ -47,7 +48,6 @@ class Ops2(object):

def setup(self):
N = 10**3
np.random.seed(1234)
self.df = DataFrame(np.random.randn(N, N))
self.df2 = DataFrame(np.random.randn(N, N))

Expand Down Expand Up @@ -89,14 +89,12 @@ class Timeseries(object):
param_names = ['tz']

def setup(self, tz):
self.N = 10**6
self.halfway = ((self.N // 2) - 1)
self.s = Series(date_range('20010101', periods=self.N, freq='T',
tz=tz))
self.ts = self.s[self.halfway]
N = 10**6
halfway = (N // 2) - 1
self.s = Series(date_range('20010101', periods=N, freq='T', tz=tz))
self.ts = self.s[halfway]

self.s2 = Series(date_range('20010101', periods=self.N, freq='s',
tz=tz))
self.s2 = Series(date_range('20010101', periods=N, freq='s', tz=tz))

def time_series_timestamp_compare(self, tz):
self.s <= self.ts
Expand Down Expand Up @@ -131,7 +129,6 @@ class AddOverflowArray(object):
goal_time = 0.2

def setup(self):
np.random.seed(1234)
N = 10**6
self.arr = np.arange(N)
self.arr_rev = np.arange(-N, 0)
Expand Down
5 changes: 2 additions & 3 deletions asv_bench/benchmarks/categoricals.py
Original file line number Diff line number Diff line change
Expand Up @@ -9,6 +9,8 @@
except ImportError:
pass

from .pandas_vb_common import setup # noqa


class Concat(object):

Expand Down Expand Up @@ -76,7 +78,6 @@ class ValueCounts(object):

def setup(self, dropna):
n = 5 * 10**5
np.random.seed(2718281)
arr = ['s%04d' % i for i in np.random.randint(0, n // 10, size=n)]
self.ts = pd.Series(arr).astype('category')

Expand All @@ -101,7 +102,6 @@ class SetCategories(object):

def setup(self):
n = 5 * 10**5
np.random.seed(2718281)
arr = ['s%04d' % i for i in np.random.randint(0, n // 10, size=n)]
self.ts = pd.Series(arr).astype('category')

Expand All @@ -116,7 +116,6 @@ class Rank(object):
def setup(self):
N = 10**5
ncats = 100
np.random.seed(1234)

self.s_str = pd.Series(tm.makeCategoricalIndex(N, ncats)).astype(str)
self.s_str_cat = self.s_str.astype('category')
Expand Down
3 changes: 2 additions & 1 deletion asv_bench/benchmarks/ctors.py
Original file line number Diff line number Diff line change
@@ -1,14 +1,15 @@
import numpy as np
from pandas import DataFrame, Series, Index, DatetimeIndex, Timestamp

from .pandas_vb_common import setup # noqa


class Constructors(object):

goal_time = 0.2

def setup(self):
N = 10**2
np.random.seed(1234)
self.arr = np.random.randn(N, N)
self.arr_str = np.array(['foo', 'bar', 'baz'], dtype=object)

Expand Down
24 changes: 12 additions & 12 deletions asv_bench/benchmarks/eval.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,6 +5,8 @@
except ImportError:
import pandas.computation.expressions as expr

from .pandas_vb_common import setup # noqa


class Eval(object):

Expand All @@ -14,7 +16,6 @@ class Eval(object):
param_names = ['engine', 'threads']

def setup(self, engine, threads):
np.random.seed(1234)
self.df = pd.DataFrame(np.random.randn(20000, 100))
self.df2 = pd.DataFrame(np.random.randn(20000, 100))
self.df3 = pd.DataFrame(np.random.randn(20000, 100))
Expand Down Expand Up @@ -45,17 +46,16 @@ class Query(object):
goal_time = 0.2

def setup(self):
np.random.seed(1234)
self.N = 10**6
self.halfway = (self.N // 2) - 1
self.index = pd.date_range('20010101', periods=self.N, freq='T')
self.s = pd.Series(self.index)
self.ts = self.s.iloc[self.halfway]
self.df = pd.DataFrame({'a': np.random.randn(self.N), 'dates': self.s},
index=self.index)
self.data = np.random.randn(self.N)
self.min_val = self.data.min()
self.max_val = self.data.max()
N = 10**6
halfway = (N // 2) - 1
index = pd.date_range('20010101', periods=N, freq='T')
s = pd.Series(index)
self.ts = s.iloc[halfway]
self.df = pd.DataFrame({'a': np.random.randn(N), 'dates': s},
index=index)
data = np.random.randn(N)
self.min_val = data.min()
self.max_val = data.max()

def time_query_datetime_index(self):
self.df.query('index < @self.ts')
Expand Down
25 changes: 10 additions & 15 deletions asv_bench/benchmarks/frame_ctor.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,27 +4,23 @@
try:
from pandas.tseries import offsets
except:
from pandas.core.datetools import *
from pandas.core.datetools import * # noqa

from .pandas_vb_common import setup # noqa

# ----------------------------------------------------------------------
# Creation from nested dict

class FromDicts(object):

goal_time = 0.2

def setup(self):
np.random.seed(1234)
N, K = 5000, 50
self.index = tm.makeStringIndex(N)
self.columns = tm.makeStringIndex(K)
self.frame = DataFrame(np.random.randn(N, K),
index=self.index,
columns=self.columns)
self.data = self.frame.to_dict()
index = tm.makeStringIndex(N)
columns = tm.makeStringIndex(K)
frame = DataFrame(np.random.randn(N, K), index=index, columns=columns)
self.data = frame.to_dict()
self.some_dict = list(self.data.values())[0]
self.dict_list = self.frame.to_dict(orient='records')
self.dict_list = frame.to_dict(orient='records')
self.data2 = {i: {j: float(j) for j in range(100)}
for i in range(2000)}

Expand All @@ -42,14 +38,13 @@ def time_frame_ctor_nested_dict_int64(self):
DataFrame(self.data2)


# from a mi-series

class FromSeries(object):

goal_time = 0.2

def setup(self):
self.mi = MultiIndex.from_product([range(100), range(100)])
self.s = Series(np.random.randn(10000), index=self.mi)
mi = MultiIndex.from_product([range(100), range(100)])
self.s = Series(np.random.randn(10000), index=mi)

def time_frame_from_mi_series(self):
DataFrame(self.s)
Expand Down
3 changes: 2 additions & 1 deletion asv_bench/benchmarks/frame_methods.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,7 +3,8 @@
import pandas.util.testing as tm
from pandas import (DataFrame, Series, MultiIndex, date_range, period_range,
isnull, NaT)
from .pandas_vb_common import setup

from .pandas_vb_common import setup # noqa


class GetNumericData(object):
Expand Down