forked from PaddlePaddle/Paddle
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[PaddlePaddle Hackathon] add Squeezenet (PaddlePaddle#36066)
* add squeezenet
- Loading branch information
1 parent
90fd864
commit 4417f74
Showing
5 changed files
with
258 additions
and
2 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,240 @@ | ||
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
from __future__ import absolute_import | ||
from __future__ import division | ||
from __future__ import print_function | ||
|
||
import paddle | ||
import paddle.nn as nn | ||
import paddle.nn.functional as F | ||
|
||
from paddle.nn import Conv2D, Dropout | ||
from paddle.nn import AdaptiveAvgPool2D, MaxPool2D | ||
from paddle.fluid.param_attr import ParamAttr | ||
from paddle.utils.download import get_weights_path_from_url | ||
|
||
__all__ = [] | ||
|
||
model_urls = { | ||
'squeezenet1_0': | ||
('https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SqueezeNet1_0_pretrained.pdparams', | ||
'30b95af60a2178f03cf9b66cd77e1db1'), | ||
'squeezenet1_1': | ||
('https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SqueezeNet1_1_pretrained.pdparams', | ||
'a11250d3a1f91d7131fd095ebbf09eee'), | ||
} | ||
|
||
|
||
class MakeFireConv(nn.Layer): | ||
def __init__(self, input_channels, output_channels, filter_size, padding=0): | ||
super(MakeFireConv, self).__init__() | ||
self._conv = Conv2D( | ||
input_channels, | ||
output_channels, | ||
filter_size, | ||
padding=padding, | ||
weight_attr=ParamAttr(), | ||
bias_attr=ParamAttr()) | ||
|
||
def forward(self, x): | ||
x = self._conv(x) | ||
x = F.relu(x) | ||
return x | ||
|
||
|
||
class MakeFire(nn.Layer): | ||
def __init__(self, input_channels, squeeze_channels, expand1x1_channels, | ||
expand3x3_channels): | ||
super(MakeFire, self).__init__() | ||
self._conv = MakeFireConv(input_channels, squeeze_channels, 1) | ||
self._conv_path1 = MakeFireConv(squeeze_channels, expand1x1_channels, 1) | ||
self._conv_path2 = MakeFireConv( | ||
squeeze_channels, expand3x3_channels, 3, padding=1) | ||
|
||
def forward(self, inputs): | ||
x = self._conv(inputs) | ||
x1 = self._conv_path1(x) | ||
x2 = self._conv_path2(x) | ||
return paddle.concat([x1, x2], axis=1) | ||
|
||
|
||
class SqueezeNet(nn.Layer): | ||
"""SqueezeNet model from | ||
`"SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size" | ||
<https://arxiv.org/pdf/1602.07360.pdf>`_ | ||
Args: | ||
version (str): version of squeezenet, which can be "1.0" or "1.1". | ||
num_classes (int): output dim of last fc layer. Default: 1000. | ||
with_pool (bool): use pool before the last fc layer or not. Default: True. | ||
Examples: | ||
.. code-block:: python | ||
import paddle | ||
from paddle.vision.models import SqueezeNet | ||
# build v1.0 model | ||
model = SqueezeNet(version='1.0') | ||
# build v1.1 model | ||
# model = SqueezeNet(version='1.1') | ||
x = paddle.rand([1, 3, 224, 224]) | ||
out = model(x) | ||
print(out.shape) | ||
""" | ||
|
||
def __init__(self, version, num_classes=1000, with_pool=True): | ||
super(SqueezeNet, self).__init__() | ||
self.version = version | ||
self.num_classes = num_classes | ||
self.with_pool = with_pool | ||
|
||
supported_versions = ['1.0', '1.1'] | ||
assert version in supported_versions, \ | ||
"supported versions are {} but input version is {}".format( | ||
supported_versions, version) | ||
|
||
if self.version == "1.0": | ||
self._conv = Conv2D( | ||
3, | ||
96, | ||
7, | ||
stride=2, | ||
weight_attr=ParamAttr(), | ||
bias_attr=ParamAttr()) | ||
self._pool = MaxPool2D(kernel_size=3, stride=2, padding=0) | ||
self._conv1 = MakeFire(96, 16, 64, 64) | ||
self._conv2 = MakeFire(128, 16, 64, 64) | ||
self._conv3 = MakeFire(128, 32, 128, 128) | ||
self._conv4 = MakeFire(256, 32, 128, 128) | ||
self._conv5 = MakeFire(256, 48, 192, 192) | ||
self._conv6 = MakeFire(384, 48, 192, 192) | ||
self._conv7 = MakeFire(384, 64, 256, 256) | ||
self._conv8 = MakeFire(512, 64, 256, 256) | ||
else: | ||
self._conv = Conv2D( | ||
3, | ||
64, | ||
3, | ||
stride=2, | ||
padding=1, | ||
weight_attr=ParamAttr(), | ||
bias_attr=ParamAttr()) | ||
self._pool = MaxPool2D(kernel_size=3, stride=2, padding=0) | ||
self._conv1 = MakeFire(64, 16, 64, 64) | ||
self._conv2 = MakeFire(128, 16, 64, 64) | ||
self._conv3 = MakeFire(128, 32, 128, 128) | ||
self._conv4 = MakeFire(256, 32, 128, 128) | ||
self._conv5 = MakeFire(256, 48, 192, 192) | ||
self._conv6 = MakeFire(384, 48, 192, 192) | ||
self._conv7 = MakeFire(384, 64, 256, 256) | ||
self._conv8 = MakeFire(512, 64, 256, 256) | ||
|
||
self._drop = Dropout(p=0.5, mode="downscale_in_infer") | ||
self._conv9 = Conv2D( | ||
512, num_classes, 1, weight_attr=ParamAttr(), bias_attr=ParamAttr()) | ||
self._avg_pool = AdaptiveAvgPool2D(1) | ||
|
||
def forward(self, inputs): | ||
x = self._conv(inputs) | ||
x = F.relu(x) | ||
x = self._pool(x) | ||
if self.version == "1.0": | ||
x = self._conv1(x) | ||
x = self._conv2(x) | ||
x = self._conv3(x) | ||
x = self._pool(x) | ||
x = self._conv4(x) | ||
x = self._conv5(x) | ||
x = self._conv6(x) | ||
x = self._conv7(x) | ||
x = self._pool(x) | ||
x = self._conv8(x) | ||
else: | ||
x = self._conv1(x) | ||
x = self._conv2(x) | ||
x = self._pool(x) | ||
x = self._conv3(x) | ||
x = self._conv4(x) | ||
x = self._pool(x) | ||
x = self._conv5(x) | ||
x = self._conv6(x) | ||
x = self._conv7(x) | ||
x = self._conv8(x) | ||
if self.num_classes > 0: | ||
x = self._drop(x) | ||
x = self._conv9(x) | ||
if self.with_pool: | ||
x = F.relu(x) | ||
x = self._avg_pool(x) | ||
x = paddle.squeeze(x, axis=[2, 3]) | ||
|
||
return x | ||
|
||
|
||
def _squeezenet(arch, version, pretrained, **kwargs): | ||
model = SqueezeNet(version, **kwargs) | ||
if pretrained: | ||
assert arch in model_urls, "{} model do not have a pretrained model now, you should set pretrained=False".format( | ||
arch) | ||
weight_path = get_weights_path_from_url(model_urls[arch][0], | ||
model_urls[arch][1]) | ||
param = paddle.load(weight_path) | ||
model.set_dict(param) | ||
|
||
return model | ||
|
||
|
||
def squeezenet1_0(pretrained=False, **kwargs): | ||
"""SqueezeNet v1.0 model | ||
Args: | ||
pretrained (bool): If True, returns a model pre-trained on ImageNet. Default: False. | ||
Examples: | ||
.. code-block:: python | ||
from paddle.vision.models import squeezenet1_0 | ||
# build model | ||
model = squeezenet1_0() | ||
# build model and load imagenet pretrained weight | ||
# model = squeezenet1_0(pretrained=True) | ||
""" | ||
return _squeezenet('squeezenet1_0', '1.0', pretrained, **kwargs) | ||
|
||
|
||
def squeezenet1_1(pretrained=False, **kwargs): | ||
"""SqueezeNet v1.1 model | ||
Args: | ||
pretrained (bool): If True, returns a model pre-trained on ImageNet. Default: False. | ||
Examples: | ||
.. code-block:: python | ||
from paddle.vision.models import squeezenet1_1 | ||
# build model | ||
model = squeezenet1_1() | ||
# build model and load imagenet pretrained weight | ||
# model = squeezenet1_1(pretrained=True) | ||
""" | ||
return _squeezenet('squeezenet1_1', '1.1', pretrained, **kwargs) |