Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add segment-wiki script #1483

Merged
merged 10 commits into from
Oct 27, 2017
206 changes: 206 additions & 0 deletions gensim/scripts/segment_wiki.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,206 @@
#!/usr/bin/env python
# -*- coding: utf-8 -*-
#
# Author: Jayant Jain <jayant@rare-technologies.com>
# Copyright (C) 2016 RaRe Technologies

"""
Construct a corpus from a Wikipedia (or other MediaWiki-based) database dump and extract sections of pages from it

If you have the `pattern` package installed, this module will use a fancy
lemmatization to get a lemma of each token (instead of plain alphabetic
tokenizer). The package is available at https://github.com/clips/pattern .

"""

import argparse
import json
import logging
import multiprocessing
import re
import sys
from xml.etree import cElementTree

from gensim.corpora.wikicorpus import ARTICLE_MIN_WORDS, IGNORED_NAMESPACES, WikiCorpus, \
filter_wiki, get_namespace, tokenize, utils
from smart_open import smart_open


logger = logging.getLogger(__name__)


def segment_all_articles(file_path):
"""
Extract article titles and sections from a MediaWiki bz2 database dump.

Return an iterable over (str, list) which generates
(title, [(section_heading, section_content)]) 2-tuples.

"""
with smart_open(file_path, 'rb') as xml_fileobj:
wiki_sections_corpus = WikiSectionsCorpus(xml_fileobj)
wiki_sections_corpus.metadata = True
wiki_sections_text = wiki_sections_corpus.get_texts_with_sections()
for article_title, article_sections in wiki_sections_text:
yield article_title, article_sections


def segment_and_print_all_articles(file_path, output_file):
"""
Prints article title and sections to stdout, tab-separated
article_title<tab>section_heading<tab>section_content<tab>section_heading<tab>section_content

"""
with smart_open(output_file, 'wb') as outfile:
for idx, (article_title, article_sections) in enumerate(segment_all_articles(file_path)):
printed_components = [json.dumps(article_title)]
for section_heading, section_content in article_sections:
printed_components.append(json.dumps(section_heading))
printed_components.append(json.dumps(section_content))
if (idx + 1) % 100000 == 0:
logger.info("Processed #%d articles", idx + 1)
outfile.write(u"\t".join(printed_components).encode('utf-8') + "\n")


def extract_page_xmls(f):
"""
Extract pages from a MediaWiki database dump = open file-like object `f`.

Return an iterable which generates xml strings for page tags.

"""
elems = (elem for _, elem in cElementTree.iterparse(f, events=("end",)))

elem = next(elems)
namespace = get_namespace(elem.tag)
ns_mapping = {"ns": namespace}
page_tag = "{%(ns)s}page" % ns_mapping

for elem in elems:
if elem.tag == page_tag:
yield cElementTree.tostring(elem)
# Prune the element tree, as per
# http://www.ibm.com/developerworks/xml/library/x-hiperfparse/
# except that we don't need to prune backlinks from the parent
# because we don't use LXML.
# We do this only for <page>s, since we need to inspect the
# ./revision/text element. The pages comprise the bulk of the
# file, so in practice we prune away enough.
elem.clear()


def segment(page_xml):
"""
Parse the content inside a page tag, returning its content as a list of tokens
(utf8-encoded strings).

Returns a 2-tuple (str, list) -
Copy link
Owner

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Neither google nor numpy docstring format.

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Done

(title, [(section_heading, section_content)])

"""
elem = cElementTree.fromstring(page_xml)
filter_namespaces = ('0',)
Copy link
Owner

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Deserves a comment -- what is this?

namespace = get_namespace(elem.tag)
ns_mapping = {"ns": namespace}
text_path = "./{%(ns)s}revision/{%(ns)s}text" % ns_mapping
title_path = "./{%(ns)s}title" % ns_mapping
ns_path = "./{%(ns)s}ns" % ns_mapping
lead_section_heading = "Introduction"
top_level_heading_regex = r"\n==[^=].*[^=]==\n"
top_level_heading_regex_capture = r"\n==([^=].*[^=])==\n"

title = elem.find(title_path).text
text = elem.find(text_path).text
ns = elem.find(ns_path).text
if ns not in filter_namespaces:
text = None

if text is not None:
section_contents = re.split(top_level_heading_regex, text)
section_headings = [lead_section_heading] + re.findall(top_level_heading_regex_capture, text)
assert(len(section_contents) == len(section_headings))
else:
section_contents = []
section_headings = []

section_contents = [filter_wiki(section_content) for section_content in section_contents]
sections = list(zip(section_headings, section_contents))
return title, sections


class WikiSectionsCorpus(WikiCorpus):
"""
Treat a wikipedia articles dump (\*articles.xml.bz2) as a (read-only) corpus.

The documents are extracted on-the-fly, so that the whole (massive) dump
can stay compressed on disk.

>>> wiki = WikiCorpus('enwiki-20100622-pages-articles.xml.bz2') # create word->word_id mapping, takes almost 8h
Copy link
Owner

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Docstring out of date (different class).

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Done (updated all docstrings, converted to numpy-style, removed outdated things).

>>> MmCorpus.serialize('wiki_en_vocab200k.mm', wiki) # another 8h, creates a file in MatrixMarket format plus file with id->word

"""
def __init__(self, fileobj, processes=None, lemmatize=utils.has_pattern(), filter_namespaces=('0',)):
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Don't mix __init__ and class annotations. I propose to annotate __init__ from now on.

http://www.sphinx-doc.org/en/stable/ext/example_numpy.html

"""
Initialize the corpus. Unless a dictionary is provided, this scans the
corpus once, to determine its vocabulary.

If `pattern` package is installed, use fancier shallow parsing to get
token lemmas. Otherwise, use simple regexp tokenization. You can override
this automatic logic by forcing the `lemmatize` parameter explicitly.

"""
self.fileobj = fileobj
self.filter_namespaces = filter_namespaces
self.metadata = False
if processes is None:
processes = max(1, multiprocessing.cpu_count() - 1)
self.processes = processes
self.lemmatize = lemmatize

def get_texts_with_sections(self):
"""
Iterate over the dump, returning titles and text versions of all sections of articles as a list
of 2-tuples [(article_title, [(section_heading, section_content)]].

Only articles of sufficient length are returned (short articles & redirects
etc are ignored).

Note that this iterates over the **texts**; if you want vectors, just use
the standard corpus interface instead of this function::

>>> for vec in wiki_corpus:
>>> print(vec)
"""
articles = 0
page_xmls = extract_page_xmls(self.fileobj)
pool = multiprocessing.Pool(self.processes)
# process the corpus in smaller chunks of docs, because multiprocessing.Pool
# is dumb and would load the entire input into RAM at once...
for group in utils.chunkize(page_xmls, chunksize=10 * self.processes, maxsize=1):
for article_title, sections in pool.imap(segment, group): # chunksize=10):
# article redirects and short stubs are pruned here
num_total_tokens = 0
for section_title, section_content in sections:
if self.lemmatize:
num_total_tokens += len(utils.lemmatize(section_content))
else:
num_total_tokens += len(tokenize(section_content))
Copy link
Owner

@piskvorky piskvorky Oct 7, 2017

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Btw I think for the purposes of gensim-data, we shouldn't do any tokenization or normalization. We should present the sections "as they are", so people can use their own sentence detection / token detection etc. Only remove newlines and tabs just before printing, because of the output format.

It's easy to go from raw section_content => tokenize, but impossible to go from tokenize => raw. @menshikh-iv

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

This is only for filtering very short articles, all content provided "as is".

Copy link
Owner

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Ah, OK, thanks.

if num_total_tokens < ARTICLE_MIN_WORDS or any(article_title.startswith(ignore + ':') for ignore in IGNORED_NAMESPACES):
continue
articles += 1
yield (article_title, sections)
pool.terminate()
self.length = articles # cache corpus length


if __name__ == "__main__":
logging.basicConfig(format='%(asctime)s : %(processName)s : %(levelname)s : %(message)s', level=logging.INFO)
logger.info("running %s", " ".join(sys.argv))

parser = argparse.ArgumentParser(formatter_class=argparse.RawTextHelpFormatter, description=globals()['__doc__'])
parser.add_argument('-f', '--file', help='path to mediawiki database dump', required=True)
parser.add_argument('-o', '--output', help='path to output file', required=True)
args = parser.parse_args()
segment_and_print_all_articles(args.file, args.output)

logger.info("finished running %s", sys.argv[0])