Skip to content

Commit

Permalink
Trac #19969: asymptotic expansion generator: singularity analysis (lo…
Browse files Browse the repository at this point in the history
…g-type)

Follow-up to #19532. This ticket is for implementation of the case `beta
!= 0`.

URL: http://trac.sagemath.org/19969
Reported by: behackl
Ticket author(s): Benjamin Hackl, Clemens Heuberger
Reviewer(s): Clemens Heuberger, Daniel Krenn
  • Loading branch information
Release Manager authored and vbraun committed Feb 14, 2016
2 parents 9c7a3fe + b540598 commit e514ec1
Showing 1 changed file with 142 additions and 116 deletions.
258 changes: 142 additions & 116 deletions src/sage/rings/asymptotic/asymptotic_expansion_generators.py
Original file line number Diff line number Diff line change
Expand Up @@ -69,6 +69,7 @@
- Daniel Krenn (2015)
- Clemens Heuberger (2016)
- Benjamin Hackl (2016)
ACKNOWLEDGEMENT:
Expand Down Expand Up @@ -581,7 +582,7 @@ def Binomial_kn_over_n(var, k, precision=None, skip_constant_factor=False):

@staticmethod
def SingularityAnalysis(var, zeta=1, alpha=0, beta=0, delta=0,
precision=None, skip_constant_factor=False):
precision=None):
r"""
Return the asymptotic expansion of the coefficients of
an power series with specified pole and logarithmic singularity.
Expand All @@ -604,20 +605,13 @@ def SingularityAnalysis(var, zeta=1, alpha=0, beta=0, delta=0,
- ``alpha`` -- (default: `0`) the pole order of the singularty.
- ``beta`` -- (default: `0`) the order of the logarithmic singularity.
Not yet implemented for ``beta != 0``.
- ``delta`` -- (default: `0`) the order of the log-log singularity.
Not yet implemented for ``delta != 0``.
- ``precision`` -- (default: ``None``) an integer. If ``None``, then
the default precision of the asymptotic ring is used.
- ``skip_constant_factor`` -- (default: ``False``) a
boolean. If set, then the constant factor is left out.
As a consequence, the coefficient ring of the output changes
from ``Symbolic Constants Subring`` (if ``False``) to
``Rational Field`` (if ``True``).
OUTPUT:
An asymptotic expansion.
Expand Down Expand Up @@ -672,6 +666,38 @@ def SingularityAnalysis(var, zeta=1, alpha=0, beta=0, delta=0,
Asymptotic Ring <n^(Symbolic Subring rejecting the variable n)>
over Symbolic Subring rejecting the variable n
::
sage: ae = asymptotic_expansions.SingularityAnalysis('n',
....: alpha=1/2, beta=1, precision=4); ae
1/sqrt(pi)*n^(-1/2)*log(n) + ((euler_gamma + 2*log(2))/sqrt(pi))*n^(-1/2)
- 5/8/sqrt(pi)*n^(-3/2)*log(n) + (1/8*(3*euler_gamma + 6*log(2) - 8)/sqrt(pi)
- (euler_gamma + 2*log(2) - 2)/sqrt(pi))*n^(-3/2) + O(n^(-5/2)*log(n))
sage: n = ae.parent().gen()
sage: ae.subs(n=n-1).map_coefficients(lambda x: x.canonicalize_radical())
1/sqrt(pi)*n^(-1/2)*log(n)
+ ((euler_gamma + 2*log(2))/sqrt(pi))*n^(-1/2)
- 1/8/sqrt(pi)*n^(-3/2)*log(n)
+ (-1/8*(euler_gamma + 2*log(2))/sqrt(pi))*n^(-3/2)
+ O(n^(-5/2)*log(n))
::
sage: asymptotic_expansions.SingularityAnalysis('n',
....: alpha=1, beta=1/2, precision=4)
log(n)^(1/2) + 1/2*euler_gamma*log(n)^(-1/2)
+ (-1/8*euler_gamma^2 + 1/48*pi^2)*log(n)^(-3/2)
+ (1/16*euler_gamma^3 - 1/32*euler_gamma*pi^2 + 1/8*zeta(3))*log(n)^(-5/2)
+ O(log(n)^(-7/2))
::
sage: ae = asymptotic_expansions.SingularityAnalysis('n',
....: alpha=0, beta=2, precision=14)
sage: n = ae.parent().gen()
sage: ae.subs(n=n-2)
2*n^(-1)*log(n) + 2*euler_gamma*n^(-1) - n^(-2) - 1/6*n^(-3) + O(n^(-5))
ALGORITHM:
See [FS2009]_ together with the
Expand Down Expand Up @@ -707,9 +733,10 @@ def SingularityAnalysis(var, zeta=1, alpha=0, beta=0, delta=0,
sage: asymptotic_expansions.SingularityAnalysis(
....: 'n', alpha=0)
0
sage: _.parent()
Asymptotic Ring <n^ZZ> over Rational Field
Traceback (most recent call last):
...
NotImplementedOZero: The error term in the result is O(0)
which means 0 for sufficiently large n.
sage: asymptotic_expansions.SingularityAnalysis(
....: 'n', alpha=-1)
Traceback (most recent call last):
Expand All @@ -728,18 +755,6 @@ def SingularityAnalysis(var, zeta=1, alpha=0, beta=0, delta=0,
sage: _.parent()
Asymptotic Ring <m^QQ> over Symbolic Constants Subring
Skip constant factor::
sage: asymptotic_expansions.SingularityAnalysis(
....: 'm', alpha=-1/2, precision=3,
....: skip_constant_factor=True)
m^(-3/2)
+ 3/8*m^(-5/2)
+ 25/128*m^(-7/2)
+ O(m^(-9/2))
sage: _.parent()
Asymptotic Ring <m^QQ> over Rational Field
Location of the singularity::
sage: asymptotic_expansions.SingularityAnalysis(
Expand All @@ -766,13 +781,49 @@ def SingularityAnalysis(var, zeta=1, alpha=0, beta=0, delta=0,
1/sqrt(pi)*(1/2)^n*n^(-1/2) - 1/8/sqrt(pi)*(1/2)^n*n^(-3/2)
+ 1/128/sqrt(pi)*(1/2)^n*n^(-5/2) + O((1/2)^n*n^(-7/2))
"""
from itertools import islice, count
from asymptotic_ring import AsymptoticRing
from sage.functions.other import gamma
from growth_group import ExponentialGrowthGroup, \
MonomialGrowthGroup
from sage.arith.all import falling_factorial
from sage.categories.cartesian_product import cartesian_product
from sage.functions.other import binomial, gamma
from sage.calculus.calculus import limit
from sage.misc.cachefunc import cached_function
from sage.misc.misc import srange
from sage.rings.rational_field import QQ
from sage.rings.integer_ring import ZZ
from sage.symbolic.ring import SR

SCR = SR.subring(no_variables=True)
s = SR('s')
iga = 1/gamma(alpha)
if iga.parent() is SR:
try:
iga = SCR(iga)
except TypeError:
pass

coefficient_ring = iga.parent()
if beta != 0:
coefficient_ring = SCR

@cached_function
def inverse_gamma_derivative(shift, r):
"""
Return value of `r`-th derivative of 1/Gamma
at alpha-shift.
"""
if r == 0:
result = iga*falling_factorial(alpha-1, shift)
else:
result = limit((1/gamma(s)).diff(s, r), s=alpha-shift)

try:
return coefficient_ring(result)
except TypeError:
return result

if isinstance(alpha, int):
alpha = ZZ(alpha)
if isinstance(beta, int):
Expand All @@ -783,116 +834,81 @@ def SingularityAnalysis(var, zeta=1, alpha=0, beta=0, delta=0,
if precision is None:
precision = AsymptoticRing.__default_prec__

SCR = SR.subring(no_variables=True)

if delta != 0:
raise NotImplementedError

elif beta != 0:
raise NotImplementedError

elif alpha != 0:
groups = []
if zeta != 1:
groups.append(ExponentialGrowthGroup((1/zeta).parent(), var))

if skip_constant_factor:
iga = QQ(1)
else:
iga = QQ(1) / gamma(alpha)
if iga.parent() is SR:
try:
iga = SCR(iga)
except TypeError:
pass

from growth_group import ExponentialGrowthGroup, \
MonomialGrowthGroup
groups.append(MonomialGrowthGroup(alpha.parent(), var))
if beta != 0:
groups.append(MonomialGrowthGroup(beta.parent(), 'log({})'.format(var)))

if zeta == 1:
group = MonomialGrowthGroup(alpha.parent(), var)
else:
from sage.categories.cartesian_product \
import cartesian_product
group = cartesian_product(
[ExponentialGrowthGroup((1/zeta).parent(), var),
MonomialGrowthGroup(alpha.parent(), var)])

A = AsymptoticRing(
growth_group=group,
coefficient_ring=iga.parent())
n = A.gen()

if zeta == 1:
exponential_factor = 1
else:
exponential_factor = n.rpow(1/zeta)

e = _sa_coefficients_e_(precision, alpha)
result = sum(n**(alpha-1-k) * iga * e[k]
for k in srange(precision))

if alpha in ZZ:
a = ZZ(alpha)
if a > 0 and a <= precision:
return exponential_factor * result
elif a < 0:
assert result.is_zero()
from misc import NotImplementedOZero
raise NotImplementedOZero(A)

return exponential_factor * (result + (n**(alpha-1-precision)).O())
group = cartesian_product(groups)
A = AsymptoticRing(growth_group=group, coefficient_ring=coefficient_ring,
default_prec=precision)
n = A.gen()

if zeta == 1:
exponential_factor = 1
else:
return AsymptoticRing(growth_group='%s^ZZ' % (var,),
coefficient_ring=QQ).zero()
exponential_factor = n.rpow(1/zeta)

if beta in ZZ and beta >= 0:
it = ((k, r)
for k in count()
for r in srange(beta+1))
k_max = precision
else:
it = ((0, r)
for r in count())
k_max = 0

def _sa_coefficients_e_(K, alpha):
r"""
Return the coefficient `e_k` used in singularity analysis.
INPUT:
- ``K`` -- an integer specifying the number of coefficients.
- ``alpha`` -- an object.
OUTPUT:
A tuple of objects.
.. SEEALSO::
:meth:`~AsymptoticExpansionGenerators.SingularityAnalysis`
TESTS::
sage: from sage.rings.asymptotic.asymptotic_expansion_generators \
....: import _sa_coefficients_e_
sage: a = SR.var('a')
sage: tuple(c.factor() for c in _sa_coefficients_e_(4, a))
(1,
1/2*(a - 1)*a,
1/24*(3*a - 1)*(a - 1)*(a - 2)*a,
1/48*(a - 1)^2*(a - 2)*(a - 3)*a^2)
"""
from sage.arith.all import falling_factorial
from sage.misc.misc import srange
from sage.rings.integer_ring import ZZ
if beta != 0:
log_n = n.log()
else:
# avoid construction of log(n)
# because it does not exist in growth group.
log_n = 1

it = reversed(list(islice(it, precision+1)))
L = _sa_coefficients_lambda_(max(1, k_max), beta=beta)
(k, r) = next(it)
result = (n**(-k) * log_n**(-r)).O()

if alpha in ZZ and beta == 0:
if alpha > 0 and alpha <= precision:
result = A(0)
elif alpha <= 0 and precision > 0:
from misc import NotImplementedOZero
raise NotImplementedOZero(A)

for (k, r) in it:
result += binomial(beta, r) * \
sum(L[(k, ell)] * (-1)**ell *
inverse_gamma_derivative(ell, r)
for ell in srange(k, 2*k+1)
if (k, ell) in L) * \
n**(-k) * log_n**(-r)

result *= exponential_factor * n**(alpha-1) * log_n**beta

L = _sa_coefficients_lambda_(K)
return tuple(sum((-1)**ell * L[(k, ell)] *
falling_factorial(alpha - 1, ell)
for ell in srange(k, 2*k+1) if L.has_key((k, ell)))
for k in srange(K))
return result


def _sa_coefficients_lambda_(K):
def _sa_coefficients_lambda_(K, beta=0):
r"""
Return the coefficients `\lambda_{k, \ell}` used in singularity analysis.
Return the coefficients `\lambda_{k, \ell}(\beta)` used in singularity analysis.
INPUT:
- ``K`` -- an integer.
- ``beta`` -- (default: `0`) the order of the logarithmic
singularity.
OUTPUT:
A dictionary mapping pairs of indices to rationals.
Expand All @@ -915,6 +931,16 @@ def _sa_coefficients_lambda_(K):
(3, 3): -1,
(3, 4): 13/12,
(4, 4): 1}
sage: _sa_coefficients_lambda_(3, beta=1)
{(0, 0): 1,
(1, 1): -2,
(1, 2): 1/2,
(2, 2): 3,
(2, 3): -4/3,
(2, 4): 1/8,
(3, 3): -4,
(3, 4): 29/12,
(4, 4): 5}
"""
from sage.rings.laurent_series_ring import LaurentSeriesRing
from sage.rings.power_series_ring import PowerSeriesRing
Expand All @@ -925,7 +951,7 @@ def _sa_coefficients_lambda_(K):
T = PowerSeriesRing(V, names='t', default_prec=2*K-1)
t = T.gen()

S = (t - (1+1/v) * (1+v*t).log()).exp()
S = (t - (1+1/v+beta) * (1+v*t).log()).exp()
return dict(((k + L.valuation(), ell), c)
for ell, L in enumerate(S.list())
for k, c in enumerate(L.list()))
Expand Down

0 comments on commit e514ec1

Please sign in to comment.