Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

#12527: refactor slice #12791

Merged
merged 1 commit into from
Sep 20, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
12 changes: 6 additions & 6 deletions models/demos/falcon7b_common/tt/falcon_attention.py
Original file line number Diff line number Diff line change
Expand Up @@ -618,7 +618,7 @@ def forward(
key_layer = ttnn.slice(
layer_past[0],
[0, 0, 0, 0],
[batch - 1, 0, nearest_32(layer_past_len + 1) - 1, self.head_dim - 1],
[batch, 1, nearest_32(layer_past_len + 1), self.head_dim],
memory_config=self.model_config["K_CACHE_SLICE_OUTPUT_MEMCFG"],
)

Expand Down Expand Up @@ -747,7 +747,7 @@ def forward(
value_layer = ttnn.slice(
layer_past[1],
[0, 0, 0, 0],
[batch - 1, 0, nearest_32(layer_past_len + 1) - 1, self.head_dim - 1],
[batch, 1, nearest_32(layer_past_len + 1), self.head_dim],
memory_config=self.model_config["V_CACHE_SLICE_OUTPUT_MEMCFG"],
)
if self.model_config["l1_sharded"]:
Expand Down Expand Up @@ -800,10 +800,10 @@ def forward(
attn_output,
[0, 0, 0, 0],
[
attn_output_shape[0] - 1,
self.num_heads - 1,
attn_output_shape[2] - 1,
attn_output_shape[3] - 1,
attn_output_shape[0],
self.num_heads,
attn_output_shape[2],
attn_output_shape[3],
],
memory_config=self.model_config["POST_SOFTMAX_MM_OUTPUT_MEMCFG"],
)
Expand Down
2 changes: 1 addition & 1 deletion models/demos/falcon7b_common/tt/falcon_mlp.py
Original file line number Diff line number Diff line change
Expand Up @@ -368,7 +368,7 @@ def forward(self, x: ttnn.Tensor) -> ttnn.Tensor:
hidden_states = ttnn.slice(
hidden_states,
[0, 0, 0, 0],
[0, 0, batch_size - 1, self.hidden_size - 1],
[1, 1, batch_size, self.hidden_size],
memory_config=self.model_config["DENSE_4H_TO_H_MM_OUTPUT_MEMCFG"],
)

Expand Down
16 changes: 8 additions & 8 deletions models/demos/t3000/falcon40b/tt/falcon_attention.py
Original file line number Diff line number Diff line change
Expand Up @@ -489,10 +489,10 @@ def fwd_decode(
layer_past[0],
[0, 0, 0, 0],
[
batch - 1,
self.num_kv_heads // self.num_devices - 1,
padded_layer_past_len - 1,
self.head_dim - 1,
batch,
self.num_kv_heads // self.num_devices,
padded_layer_past_len,
self.head_dim,
],
memory_config=self.model_config["DEFAULT_MEMCFG"],
)
Expand Down Expand Up @@ -553,10 +553,10 @@ def fwd_decode(
layer_past[1],
[0, 0, 0, 0],
[
batch - 1,
self.num_kv_heads // self.num_devices - 1,
padded_layer_past_len - 1,
self.head_dim - 1,
batch,
self.num_kv_heads // self.num_devices,
padded_layer_past_len,
self.head_dim,
],
memory_config=self.model_config["DEFAULT_MEMCFG"],
)
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -96,7 +96,7 @@ def forward(self, xq, xk, rot_mat):
xq = ttnn.slice(
xq,
[0, 0, 0, 0],
[1 - 1, 8 - 1, 128 - 1, self.head_dim - 1],
[1, 8, 128, self.head_dim],
)

xk = ttnn.pad(xk, [1, 32, 128, self.head_dim], [0, 0, 0, 0], 0.0)
Expand All @@ -113,7 +113,7 @@ def forward(self, xq, xk, rot_mat):
xk = ttnn.slice(
xk,
[0, 0, 0, 0],
[1 - 1, 1 - 1, 128 - 1, self.head_dim - 1],
[1, 1, 128, self.head_dim],
)

return xq, xk
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -410,7 +410,7 @@ def prefill_forward(
norm_out_replicated = ttnn.slice(
norm_out_replicated,
(0, 0, last_token_tile * 32, 0),
(0, 0, (last_token_tile + 1) * 32 - 1, dmodel - 1),
(1, 1, (last_token_tile + 1) * 32, dmodel),
memory_config=ttnn.DRAM_MEMORY_CONFIG,
)
pc_lm_head = (
Expand Down
2 changes: 1 addition & 1 deletion models/demos/t3000/mixtral8x7b/tt/mixtral_model.py
Original file line number Diff line number Diff line change
Expand Up @@ -101,7 +101,7 @@ def forward(
# slicing for the last token
if get_last_token != -1:
x = ttnn.slice(
x, ttnn.Shape((0, 0, get_last_token, 0)), ttnn.Shape((0, 0, get_last_token + 31, 4095))
x, (0, 0, get_last_token, 0), (1, 1, get_last_token + 32, 4096)
) # [:, :, get_last_token:get_last_token+32, :]

x_norm = self.norm(x)
Expand Down
2 changes: 1 addition & 1 deletion models/demos/tg/llama3_70b/tt/llama_model_galaxy.py
Original file line number Diff line number Diff line change
Expand Up @@ -418,7 +418,7 @@ def prefill_forward(
norm_out = ttnn.slice(
norm_out,
[0, 0, seq_len - 32, 0],
[0, 0, seq_len - 1, dmodel - 1],
[1, 1, seq_len, dmodel],
)

### Each device does an LM head fracture
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -1020,7 +1020,7 @@ def run(self, input_tensor, device, ops_parallel_config, conv_op_cache={}) -> tt

if is_wormhole_b0() and self.batch_size == 16:
xshape = x.shape_without_padding()
x = ttnn.slice(x, [0, 0, 0, 0], [xshape[0] - 1, xshape[1] - 1, xshape[2] - 1, xshape[3] - 1])
x = ttnn.slice(x, [0, 0, 0, 0], [xshape[0], xshape[1], xshape[2], xshape[3]])

layer4_module1_input_shape = ttnn.Shape(x.get_legacy_shape())

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -690,7 +690,7 @@ def first_run(self, input_tensor, device, batch_size, ops_parallel_config) -> tt
x = ttnn.slice(
x,
(0, 0, 0, 0),
(unpadded_shape[0] - 1, unpadded_shape[1] - 1, unpadded_shape[2] - 1, unpadded_shape[3] - 1),
(unpadded_shape[0], unpadded_shape[1], unpadded_shape[2], unpadded_shape[3]),
memory_config=ttnn.L1_MEMORY_CONFIG,
)

Expand Down
4 changes: 2 additions & 2 deletions models/demos/wormhole/mamba/tt/mamba_block.py
Original file line number Diff line number Diff line change
Expand Up @@ -196,8 +196,8 @@ def forward(self, x):

for i in range(0, 4):
slice_start = (0, 0, x_ssm.shape[2] - (4 - i), 0)
slice_end = (0, 0, x_ssm.shape[2] - (4 - i), self.args.d_inner - 1)
entry = ttnn.slice(x_ssm, ttnn.Shape(slice_start), ttnn.Shape(slice_end))
slice_end = (1, 1, (x_ssm.shape[2] - (4 - i)) + 1, self.args.d_inner)
entry = ttnn.slice(x_ssm, slice_start, slice_end)
self.convolution_cache.set(self.configs["current_user"], i, entry)
ttnn.deallocate(entry)

Expand Down
2 changes: 1 addition & 1 deletion models/demos/wormhole/mamba/tt/mamba_conv.py
Original file line number Diff line number Diff line change
Expand Up @@ -76,7 +76,7 @@ def prepare_input(self, input_tensor):
split_size = self.config.input_channels // self.config.channels_split_factor
for i in range(self.config.channels_split_factor):
slice_start = ttnn.Shape((0, 0, 0, i * split_size))
slice_end = ttnn.Shape((0, self.config.input_length - 1, 0, (i + 1) * split_size - 1))
slice_end = ttnn.Shape((1, self.config.input_length, 1, (i + 1) * split_size))
input_tensor_splits.append(ttnn.slice(input_tensor, slice_start, slice_end))
ttnn.deallocate(input_tensor)
return input_tensor_splits
Expand Down
4 changes: 2 additions & 2 deletions models/demos/wormhole/mamba/tt/preprocessing.py
Original file line number Diff line number Diff line change
Expand Up @@ -33,8 +33,8 @@ def split_sequence_length(x: ttnn.Tensor, batch: int = 0, chunk_size: int = 32):

for i in range(0, L, chunk_size):
slice_start = (0, 0, batch, i)
slice_end = (0, 0, batch, i + chunk_size - 1)
yield ttnn.slice(x, ttnn.Shape(slice_start), ttnn.Shape(slice_end))
slice_end = (1, 1, batch + 1, i + chunk_size)
yield ttnn.slice(x, slice_start, slice_end)


def select_chunk_size(sequence_length: int, max_chunk_size: int):
Expand Down
8 changes: 4 additions & 4 deletions models/demos/wormhole/stable_diffusion/demo/demo.py
Original file line number Diff line number Diff line change
Expand Up @@ -59,10 +59,10 @@ def tt_guide(noise_pred, guidance_scale): # will return latents
noise_pred,
[1, 0, 0, 0],
[
noise_pred.shape[0] - 1,
noise_pred.shape[1] - 1,
noise_pred.shape[2] - 1,
noise_pred.shape[3] - 1,
noise_pred.shape[0],
noise_pred.shape[1],
noise_pred.shape[2],
noise_pred.shape[3],
],
)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -367,7 +367,7 @@ def time_sharded_attention(self, query, t_key, value, head_size, attn_type):
k_slice = ttnn.slice(
t_key,
(j, i, 0, 0),
(j, i, self.key_len - 1, self.seq_len - 1),
(j + 1, i + 1, self.key_len, self.seq_len),
memory_config=self.l1_interleaved_memory_config,
)

Expand Down Expand Up @@ -407,7 +407,7 @@ def time_sharded_attention(self, query, t_key, value, head_size, attn_type):
v_slice = ttnn.slice(
value,
(j, i, 0, 0),
(j, i, self.seq_len - 1, self.key_len - 1),
(j, i, self.seq_len, self.key_len),
memory_config=self.l1_interleaved_memory_config,
)
mm_slice = ttnn.matmul(
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -450,10 +450,10 @@ def __call__(
hidden_states,
[0, 0, 0, output_tensor_start_width_dim],
[
hidden_states.shape[0] - 1,
hidden_states.shape[1] - 1,
hidden_states.shape[2] - 1,
output_tensor_end_width_dim - 1,
hidden_states.shape[0],
hidden_states.shape[1],
hidden_states.shape[2],
output_tensor_end_width_dim,
],
memory_config=ttnn.L1_MEMORY_CONFIG,
)
Expand Down
4 changes: 1 addition & 3 deletions models/experimental/bloom_old/bloom_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -79,9 +79,7 @@ def create_padded_tensor(

def create_unpadded_tensor(ttm_tensor, input_tensors_shape, input_tensor_start=[0, 0, 0, 0]):
output_tensor_start = input_tensor_start
output_tensor_end = tuple(
input_tensor_start[i] + input_tensors_shape[i] - 1 for i in range(len(input_tensors_shape))
)
output_tensor_end = tuple(input_tensor_start[i] + input_tensors_shape[i] for i in range(len(input_tensors_shape)))
ttm_tensor = ttm_tensor.cpu().to(ttnn.ROW_MAJOR_LAYOUT).unpad(output_tensor_start, output_tensor_end)

return ttm_tensor
Expand Down
4 changes: 1 addition & 3 deletions models/experimental/nanogpt/nanogpt_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -18,9 +18,7 @@ def unpad_from_zero(x, desired_shape):
x = x.cpu()
if x.get_layout() != ttnn.ROW_MAJOR_LAYOUT:
x = x.to(ttnn.ROW_MAJOR_LAYOUT)
x = x.unpad(
(0, 0, 0, 0), (desired_shape[0] - 1, desired_shape[1] - 1, desired_shape[2] - 1, desired_shape[3] - 1)
)
x = x.unpad((0, 0, 0, 0), (desired_shape[0], desired_shape[1], desired_shape[2], desired_shape[3]))
x = x.to_torch().to(torch.float)
return x

Expand Down
8 changes: 4 additions & 4 deletions models/utility_functions.py
Original file line number Diff line number Diff line change
Expand Up @@ -299,10 +299,10 @@ def unpad_from_zero(x, desired_shape):
x = x.unpad(
(0, 0, 0, 0),
(
desired_shape[0] - 1,
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Lol what

desired_shape[1] - 1,
desired_shape[2] - 1,
desired_shape[3] - 1,
desired_shape[0],
desired_shape[1],
desired_shape[2],
desired_shape[3],
),
)

Expand Down
16 changes: 10 additions & 6 deletions tests/tt_eager/python_api_testing/sweep_tests/generation_funcs.py
Original file line number Diff line number Diff line change
Expand Up @@ -302,7 +302,7 @@ def gen_tensor_unpad_args(
assert len(input_shapes[0]) == 4
test_args = {}
output_tensor_start = [random.randint(0, input_shapes[0][i] - 1) for i in range(4)]
output_tensor_end = [random.randint(output_tensor_start[i], input_shapes[0][i] - 1) for i in range(4)]
output_tensor_end = [random.randint(output_tensor_start[i] + 1, input_shapes[0][i]) for i in range(4)]

test_args.update(
{
Expand Down Expand Up @@ -917,8 +917,10 @@ def gen_unpad_args(
if input_info is not None:
if input_info["layout"][0] == ttnn.ROW_MAJOR_LAYOUT:
output_tensor_start = [0, 0, 0, 0]
output_tensor_end = [random.randrange(output_tensor_start[i], input_shapes[0][i], 1) for i in range(4)]
if output_tensor_end[-1] % 2 == 0:
output_tensor_end = [
random.randrange(output_tensor_start[i] + 1, input_shapes[0][i], 1) for i in range(4)
]
if output_tensor_end[-1] % 2 != 0:
output_tensor_end[-1] += 1
input_info.update(
{
Expand All @@ -928,9 +930,11 @@ def gen_unpad_args(
)
elif input_info["layout"][0] == ttnn.TILE_LAYOUT:
output_tensor_start = [0, 0, 0, 0]
output_tensor_end = [random.randrange(output_tensor_start[i], input_shapes[0][i], 1) for i in range(4)]
output_tensor_end[-2] = max(nearest_32(output_tensor_end[-2]), 32) - 1
output_tensor_end[-1] = max(nearest_32(output_tensor_end[-1]), 32) - 1
output_tensor_end = [
random.randrange(output_tensor_start[i] + 1, input_shapes[0][i], 1) for i in range(4)
]
output_tensor_end[-2] = max(nearest_32(output_tensor_end[-2]), 32)
output_tensor_end[-1] = max(nearest_32(output_tensor_end[-1]), 32)
input_info.update(
{
"output_tensor_start": output_tensor_start,
Expand Down
8 changes: 4 additions & 4 deletions tests/tt_eager/python_api_testing/sweep_tests/pytorch_ops.py
Original file line number Diff line number Diff line change
Expand Up @@ -1338,10 +1338,10 @@ def pad(x, *args, output_tensor_shape, input_tensor_start, pad_value, **kwargs):

def unpad(x, *args, output_tensor_start, output_tensor_end, **kwargs):
out = x[
output_tensor_start[0] : output_tensor_end[0] + 1,
output_tensor_start[1] : output_tensor_end[1] + 1,
output_tensor_start[2] : output_tensor_end[2] + 1,
output_tensor_start[3] : output_tensor_end[3] + 1,
output_tensor_start[0] : output_tensor_end[0],
output_tensor_start[1] : output_tensor_end[1],
output_tensor_start[2] : output_tensor_end[2],
output_tensor_start[3] : output_tensor_end[3],
]

return out
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -69,7 +69,7 @@ def test_indexed_slice(seed, B, b, tt_dtype, device):
assert num_non_zeros == B - b

a_pt = (
ttnn.slice(indices_tt, (0, 0, 0, 0), (0, 0, 0, num_non_zeros - 1), memory_config=mem_config)
ttnn.slice(indices_tt, (0, 0, 0, 0), (1, 1, 1, num_non_zeros), memory_config=mem_config)
.cpu()
.to(ttnn.ROW_MAJOR_LAYOUT)
.to_torch()
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -53,11 +53,11 @@ def test_run_padding_test(input_tensor_shape, output_tensor_shape, input_tensor_
@pytest.mark.parametrize(
"input_tensor_shape, output_tensor_start, output_tensor_end",
(
((1, 1, 5, 5), (0, 0, 1, 1), (0, 0, 3, 3)),
((2, 2, 5, 5), (0, 0, 0, 0), (0, 0, 2, 2)),
((1, 3, 32, 32), (0, 0, 0, 0), (0, 2, 29, 29)),
((3, 5, 32, 32), (1, 2, 0, 0), (1, 4, 29, 29)),
((3, 3, 64, 64), (0, 0, 32, 32), (0, 2, 61, 61)),
((1, 1, 5, 5), (0, 0, 1, 1), (1, 1, 4, 4)),
((2, 2, 5, 5), (0, 0, 0, 0), (1, 1, 3, 3)),
((1, 3, 32, 32), (0, 0, 0, 0), (1, 3, 30, 30)),
((3, 5, 32, 32), (1, 2, 0, 0), (2, 5, 30, 30)),
((3, 3, 64, 64), (0, 0, 32, 32), (1, 3, 62, 62)),
),
)
def test_run_unpadding_test(input_tensor_shape, output_tensor_start, output_tensor_end):
Expand All @@ -72,18 +72,16 @@ def test_run_unpadding_test(input_tensor_shape, output_tensor_start, output_tens
)

# Unpad inputs on host
output_tensor_shape = tuple(
output_tensor_end[i] - output_tensor_start[i] + 1 for i in range(len(input_tensor_shape))
)
output_tensor_shape = tuple(output_tensor_end[i] - output_tensor_start[i] for i in range(len(input_tensor_shape)))
a_unpad = a.unpad(output_tensor_start, output_tensor_end)
a_pt = a_unpad.to_torch()

# Pytorch reference
a_ref = inp[
output_tensor_start[0] : output_tensor_end[0] + 1,
output_tensor_start[1] : output_tensor_end[1] + 1,
output_tensor_start[2] : output_tensor_end[2] + 1,
output_tensor_start[3] : output_tensor_end[3] + 1,
output_tensor_start[0] : output_tensor_end[0],
output_tensor_start[1] : output_tensor_end[1],
output_tensor_start[2] : output_tensor_end[2],
output_tensor_start[3] : output_tensor_end[3],
]

# print("\n", a_pt.shape)
Expand All @@ -103,7 +101,7 @@ def test_run_unpadding_test(input_tensor_shape, output_tensor_start, output_tens
def test_run_padding_and_add_test(input_tensor_shape, output_tensor_shape, input_tensor_start, pad_value, device):
# Args for unpad
output_tensor_start = input_tensor_start
output_tensor_end = tuple(input_tensor_start[i] + input_tensor_shape[i] - 1 for i in range(len(input_tensor_shape)))
output_tensor_end = tuple(input_tensor_start[i] + input_tensor_shape[i] for i in range(len(input_tensor_shape)))

inp = torch.rand(*input_tensor_shape)
ones = torch.ones(*input_tensor_shape)
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -202,7 +202,7 @@ def test_time_sharded_attnention_hwb(
v_slice = ttnn.slice(
reference_value_layer,
(0, (i * heads_per_slice), 0, 0),
(0, (i * heads_per_slice) + (heads_per_slice - 1), seq_len - 1, 63),
(1, (i * heads_per_slice) + (heads_per_slice), seq_len, 64),
memory_config=dram_interleaved_memory_config,
)

Expand Down Expand Up @@ -339,7 +339,7 @@ def test_time_sharded_attnention(
k_slice = ttnn.slice(
reference_key_layer_transposed,
(0, (i * heads_per_slice), 0, 0),
(0, (i * heads_per_slice) + (heads_per_slice - 1), 63, seq_len - 1),
(1, (i * heads_per_slice) + (heads_per_slice), 64, seq_len),
memory_config=l1_interleaved_memory_config,
)
mm_slice = ttnn.matmul(
Expand Down Expand Up @@ -376,7 +376,7 @@ def test_time_sharded_attnention(
v_slice = ttnn.slice(
reference_value_layer,
(0, (i * heads_per_slice), 0, 0),
(0, (i * heads_per_slice) + (heads_per_slice - 1), seq_len - 1, 63),
(1, (i * heads_per_slice) + (heads_per_slice), seq_len, 64),
memory_config=l1_interleaved_memory_config,
)
mm_slice = ttnn.matmul(
Expand Down
Loading
Loading