Skip to content

Fix inference tests on new segments for DeepARModel and TFTModel #1109

Merged
merged 2 commits into from
Feb 14, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion CHANGELOG.md
Original file line number Diff line number Diff line change
Expand Up @@ -25,7 +25,7 @@ and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0
-
-
### Fixed
-
- Fix inference tests on new segments for `DeepARModel` and `TFTModel` ([#1109](https://github.com/tinkoff-ai/etna/pull/1109))
- Fix `MeanSegmentEncoderTransform` to work with subset of segments and raise error on new segments ([#1104](https://github.com/tinkoff-ai/etna/pull/1104))
-
- Fix `SegmentEncoderTransform` to work with subset of segments and raise error on new segments ([#1103](https://github.com/tinkoff-ai/etna/pull/1103))
Expand Down
14 changes: 4 additions & 10 deletions tests/test_models/test_inference/test_forecast.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,6 +5,7 @@
import pytest
from pandas.util.testing import assert_frame_equal
from pytorch_forecasting.data import GroupNormalizer
from pytorch_forecasting.data import NaNLabelEncoder
from typing_extensions import get_args

from etna.datasets import TSDataset
Expand Down Expand Up @@ -879,15 +880,6 @@ def _test_forecast_new_segments(self, ts, model, transforms, train_segments, pre
MLPModel(input_size=2, hidden_size=[10], decoder_length=7, trainer_params=dict(max_epochs=1)),
[LagTransform(in_column="target", lags=[5, 6])],
),
],
)
def test_forecast_new_segments(self, model, transforms, example_tsds):
self._test_forecast_new_segments(example_tsds, model, transforms, train_segments=["segment_1"])

@to_be_fixed(raises=KeyError, match="Unknown category")
@pytest.mark.parametrize(
"model, transforms",
[
(
DeepARModel(max_epochs=1, learning_rate=[0.01]),
[
Expand All @@ -896,6 +888,7 @@ def test_forecast_new_segments(self, model, transforms, example_tsds):
max_prediction_length=5,
time_varying_known_reals=["time_idx"],
time_varying_unknown_reals=["target"],
categorical_encoders={"segment": NaNLabelEncoder(add_nan=True, warn=False)},
target_normalizer=GroupNormalizer(groups=["segment"]),
)
],
Expand All @@ -909,14 +902,15 @@ def test_forecast_new_segments(self, model, transforms, example_tsds):
max_prediction_length=5,
time_varying_known_reals=["time_idx"],
time_varying_unknown_reals=["target"],
categorical_encoders={"segment": NaNLabelEncoder(add_nan=True, warn=False)},
static_categoricals=["segment"],
target_normalizer=None,
)
],
),
],
)
def test_forecast_new_segments_failed_encoding_error(self, model, transforms, example_tsds):
def test_forecast_new_segments(self, model, transforms, example_tsds):
self._test_forecast_new_segments(example_tsds, model, transforms, train_segments=["segment_1"])

@to_be_fixed(raises=NotImplementedError, match="Per-segment models can't make predictions on new segments")
Expand Down
14 changes: 4 additions & 10 deletions tests/test_models/test_inference/test_predict.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,6 +5,7 @@
import pytest
from pandas.util.testing import assert_frame_equal
from pytorch_forecasting.data import GroupNormalizer
from pytorch_forecasting.data import NaNLabelEncoder

from etna.datasets import TSDataset
from etna.models import AutoARIMAModel
Expand Down Expand Up @@ -782,7 +783,7 @@ def _test_predict_new_segments(self, ts, model, transforms, train_segments, num_
def test_predict_new_segments(self, model, transforms, example_tsds):
self._test_predict_new_segments(example_tsds, model, transforms, train_segments=["segment_1"])

@to_be_fixed(raises=KeyError, match="Unknown category")
@to_be_fixed(raises=NotImplementedError, match="Method predict isn't currently implemented")
@pytest.mark.parametrize(
"model, transforms",
[
Expand All @@ -794,6 +795,7 @@ def test_predict_new_segments(self, model, transforms, example_tsds):
max_prediction_length=5,
time_varying_known_reals=["time_idx"],
time_varying_unknown_reals=["target"],
categorical_encoders={"segment": NaNLabelEncoder(add_nan=True, warn=False)},
target_normalizer=GroupNormalizer(groups=["segment"]),
)
],
Expand All @@ -807,20 +809,12 @@ def test_predict_new_segments(self, model, transforms, example_tsds):
max_prediction_length=5,
time_varying_known_reals=["time_idx"],
time_varying_unknown_reals=["target"],
categorical_encoders={"segment": NaNLabelEncoder(add_nan=True, warn=False)},
static_categoricals=["segment"],
target_normalizer=None,
)
],
),
],
)
def test_predict_new_segments_failed_encoding_error(self, model, transforms, example_tsds):
self._test_predict_new_segments(example_tsds, model, transforms, train_segments=["segment_1"])

@to_be_fixed(raises=NotImplementedError, match="Method predict isn't currently implemented")
@pytest.mark.parametrize(
"model, transforms",
[
(RNNModel(input_size=1, encoder_length=7, decoder_length=7, trainer_params=dict(max_epochs=1)), []),
(
MLPModel(input_size=2, hidden_size=[10], decoder_length=7, trainer_params=dict(max_epochs=1)),
Expand Down