Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

p4est solver on a spherical mesh #25

Merged
merged 8 commits into from
Aug 15, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
6 changes: 5 additions & 1 deletion Project.toml
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
name = "TrixiAtmo"
uuid = "c9ed1054-d170-44a9-8ee2-d5566f5d1389"
authors = ["Benedict Geihe <bgeihe@uni-koeln.de>", "Tristan Montoya <montoya.tristan@gmail.com>", "Hendrik Ranocha <hendrik.ranocha@uni-mainz.de>", "Michael Schlottke-Lakemper <michael@sloede.com>"]
authors = ["Benedict Geihe <bgeihe@uni-koeln.de>", "Tristan Montoya <montoya.tristan@gmail.com>", "Hendrik Ranocha <hendrik.ranocha@uni-mainz.de>", "Andrés Rueda-Ramírez <aruedara@uni-koeln.de>", "Michael Schlottke-Lakemper <michael@sloede.com>"]
version = "0.1.0-DEV"

[deps]
Expand All @@ -9,6 +9,8 @@ MuladdMacro = "46d2c3a1-f734-5fdb-9937-b9b9aeba4221"
Reexport = "189a3867-3050-52da-a836-e630ba90ab69"
Static = "aedffcd0-7271-4cad-89d0-dc628f76c6d3"
StaticArrays = "90137ffa-7385-5640-81b9-e52037218182"
StaticArrayInterface = "0d7ed370-da01-4f52-bd93-41d350b8b718"
StrideArrays = "d1fa6d79-ef01-42a6-86c9-f7c551f8593b"
Trixi = "a7f1ee26-1774-49b1-8366-f1abc58fbfcb"

[compat]
Expand All @@ -17,5 +19,7 @@ MuladdMacro = "0.2.2"
Reexport = "1.0"
Static = "0.8, 1"
StaticArrays = "1"
StaticArrayInterface = "1.5.1"
StrideArrays = "0.1.28"
Trixi = "0.7, 0.8"
julia = "1.9"
151 changes: 151 additions & 0 deletions examples/p4est_2d_dgsem/elixir_euler_spherical_advection_cartesian.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,151 @@

using OrdinaryDiffEq
using Trixi
using TrixiAtmo

###############################################################################
# semidiscretization of the linear advection equation

equations = CompressibleEulerEquations3D(1.4)

# Create DG solver with polynomial degree = 3 and (local) Lax-Friedrichs/Rusanov flux as surface flux
polydeg = 3
solver = DGSEM(polydeg = polydeg, surface_flux = flux_lax_friedrichs)

# Initial condition for a Gaussian density profile with constant pressure
# and the velocity of a rotating solid body
function initial_condition_advection_sphere(x, t, equations::CompressibleEulerEquations3D)
# Gaussian density
rho = 1.0 + exp(-20 * (x[1]^2 + x[3]^2))
# Constant pressure
p = 1.0

# Spherical coordinates for the point x
if sign(x[2]) == 0.0
signy = 1.0
else
signy = sign(x[2])
end
# Co-latitude
colat = acos(x[3] / sqrt(x[1]^2 + x[2]^2 + x[3]^2))
# Latitude (auxiliary variable)
lat = -colat + 0.5 * pi
# Longitude
r_xy = sqrt(x[1]^2 + x[2]^2)
if r_xy == 0.0
phi = pi / 2
else
phi = signy * acos(x[1] / r_xy)
end

# Compute the velocity of a rotating solid body
# (alpha is the angle between the rotation axis and the polar axis of the spherical coordinate system)
v0 = 1.0 # Velocity at the "equator"
alpha = 0.0 #pi / 4
v_long = v0 * (cos(lat) * cos(alpha) + sin(lat) * cos(phi) * sin(alpha))
v_lat = -v0 * sin(phi) * sin(alpha)

# Transform to Cartesian coordinate system
v1 = -cos(colat) * cos(phi) * v_lat - sin(phi) * v_long
v2 = -cos(colat) * sin(phi) * v_lat + cos(phi) * v_long
v3 = sin(colat) * v_lat

return prim2cons(SVector(rho, v1, v2, v3, p), equations)
end

# Source term function to transform the Euler equations into the linear advection equations with variable advection velocity
function source_terms_convert_to_linear_advection(u, du, x, t,
equations::CompressibleEulerEquations3D)
v1 = u[2] / u[1]
v2 = u[3] / u[1]
v3 = u[4] / u[1]

s2 = du[1] * v1 - du[2]
s3 = du[1] * v2 - du[3]
s4 = du[1] * v3 - du[4]
s5 = 0.5 * (s2 * v1 + s3 * v2 + s4 * v3) - du[5]

return SVector(0.0, s2, s3, s4, s5)
end

# Custom RHS that applies a source term that depends on du (used to convert the 3D Euler equations into the 3D linear advection
# equations with position-dependent advection speed)
function rhs_semi_custom!(du_ode, u_ode, semi, t)
# Compute standard Trixi RHS
Trixi.rhs!(du_ode, u_ode, semi, t)

# Now apply the custom source term
Trixi.@trixi_timeit Trixi.timer() "custom source term" begin
@unpack solver, equations, cache = semi
@unpack node_coordinates = cache.elements

# Wrap the solution and RHS
u = Trixi.wrap_array(u_ode, semi)
du = Trixi.wrap_array(du_ode, semi)

Trixi.@threaded for element in eachelement(solver, cache)
for j in eachnode(solver), i in eachnode(solver)
u_local = Trixi.get_node_vars(u, equations, solver, i, j, element)
du_local = Trixi.get_node_vars(du, equations, solver, i, j, element)
x_local = Trixi.get_node_coords(node_coordinates, equations, solver,
i, j, element)
source = source_terms_convert_to_linear_advection(u_local, du_local,
x_local, t, equations)
Trixi.add_to_node_vars!(du, source, equations, solver, i, j, element)
end
end
end
end

initial_condition = initial_condition_advection_sphere

mesh = TrixiAtmo.P4estMeshCubedSphere2D(5, 1.0, polydeg = polydeg,
initial_refinement_level = 0)

# A semidiscretization collects data structures and functions for the spatial discretization
semi = SemidiscretizationHyperbolic(mesh, equations, initial_condition, solver)

###############################################################################
# ODE solvers, callbacks etc.

# Create ODE problem with time span from 0.0 to π
tspan = (0.0, pi)
ode = semidiscretize(semi, tspan)

# Create custom discretization that runs with the custom RHS
ode_semi_custom = ODEProblem(rhs_semi_custom!,
ode.u0,
ode.tspan,
semi)

# At the beginning of the main loop, the SummaryCallback prints a summary of the simulation setup
# and resets the timers
summary_callback = SummaryCallback()

# The AnalysisCallback allows to analyse the solution in regular intervals and prints the results
analysis_callback = AnalysisCallback(semi, interval = 10,
save_analysis = true,
extra_analysis_errors = (:conservation_error,),
extra_analysis_integrals = (Trixi.density,))

# The SaveSolutionCallback allows to save the solution to a file in regular intervals
save_solution = SaveSolutionCallback(interval = 10,
solution_variables = cons2prim)

# The StepsizeCallback handles the re-calculation of the maximum Δt after each time step
stepsize_callback = StepsizeCallback(cfl = 0.7)

# Create a CallbackSet to collect all callbacks such that they can be passed to the ODE solver
callbacks = CallbackSet(summary_callback, analysis_callback, save_solution,
stepsize_callback)

###############################################################################
# run the simulation

# OrdinaryDiffEq's `solve` method evolves the solution in time and executes the passed callbacks
sol = solve(ode_semi_custom, CarpenterKennedy2N54(williamson_condition = false),
dt = 1.0, # solve needs some value here but it will be overwritten by the stepsize_callback
save_everystep = false, callback = callbacks);

# Print the timer summary
summary_callback()
5 changes: 5 additions & 0 deletions src/TrixiAtmo.jl
Original file line number Diff line number Diff line change
Expand Up @@ -12,12 +12,17 @@ using Trixi
using MuladdMacro: @muladd
using StaticArrays: SVector
using Static: True, False
using StrideArrays: PtrArray
using StaticArrayInterface: static_size
using LinearAlgebra: norm
using Reexport: @reexport
@reexport using StaticArrays: SVector

include("auxiliary/auxiliary.jl")
include("equations/equations.jl")
include("meshes/meshes.jl")
include("solvers/solvers.jl")
include("semidiscretization/semidiscretization_hyperbolic_2d_manifold_in_3d.jl")

export CompressibleMoistEulerEquations2D

Expand Down
2 changes: 2 additions & 0 deletions src/meshes/meshes.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,2 @@
export P4estMeshCubedSphere2D
include("p4est_cubed_sphere.jl")
Loading