Anomalib inference with TensorRT (python).
albumentations==1.3.1
anomalib==1.0.0.dev0
anomalib.egg==info
numpy==1.23.1
omegaconf==2.3.0
opencv_python==4.8.1.78
opencv_python_headless==4.8.1.78
pycuda==2023.1
tensorrt==8.5.1.7
Train and export anomalib models to onnx.
Convert onnx to trt engine.
Example:
trtexec --onnx=efficient_ad.onnx --saveEngine=efficient_ad.engine --minShapes=input:1x3x256x256 --optShapes=input:4x3x256x256 --maxShapes=input:8x3x256x256
Do inference.
Example:
python inference.py --batchsize 4 --weights weights/efficient_ad.engine --metadata data/metadata_transistor_efficient_ad.json --input D:/surface_defect_datasets/mvtec_anomaly_detection/transistor/test --output result --visualize 1 --task segmentation --visualization_mode full --show 0
python inference.py --batchsize 1 --weights weights/dfkde.engine --metadata data/metadata_transistor_dfkde.json --input D:/surface_defect_datasets/mvtec_anomaly_detection/transistor/test --output result --visualize 1 --task classification --visualization_mode full --show 0
Note: some bugs occur when doing inference with dfkde model (batchsize > 1).
https://github.com/openvinotoolkit/anomalib
https://github.com/NagatoYuki0943/anomalib-tensorrt-cpp
int8 calibration