Skip to content
This repository has been archived by the owner on Jul 16, 2024. It is now read-only.

Test Data (111113_20)

magnific0 edited this page Feb 25, 2014 · 1 revision
Testing problem: <class 'PyGMO.problem._problem.schwefel'>, Dimension: 10
    Algorithm name: Particle Swarm optimization - gen:500 omega:0.7298 eta1:2.05 eta2:2.05 variant:5 topology:2 topology param.:4 
    Best:	0.000127282363792
    Mean:	616.494887937
    Std:	244.261659932
    Algorithm name: Differential Evolution - gen:500 F: 0.8 CR: 0.9 strategy:2
    Best:	0.00013772071361
    Mean:	2.96551166462
    Std:	18.4905344442
    Algorithm name: Simulated Annealing (Corana's) - iter:10000 Ts:1 Tf:0.01 steps:1 bin_size:20 range:1 
    Best:	0.0234692712502
    Mean:	297.054916441
    Std:	157.200855726
    Algorithm name: Improved Harmony Search - iter:10000 phmcr:0.85 ppar_min:0.35 ppar_max:0.99 bw_min:1e-05 bw_max:1 
    Best:	0.000153450675498
    Mean:	0.0103727975804
    Std:	0.140784634033
    Algorithm name: A Simple Genetic Algorithm - gen:500 CR:0.95 M:0.02 elitism:1 mutation:GAUSSIAN (0.1) selection:ROULETTE crossover:EXPONENTIAL 
    Best:	119.231825433
    Mean:	460.494515106
    Std:	180.083019853
    Algorithm name: CMAES -  - gen:500 cc:-1 cs:-1 c1:-1 cmu:-1 sigma0:0.5 ftol:1e-06 xtol:1e-06 memory:0
    Best:	592.21355552
    Mean:	1715.32597413
    Std:	440.404261085
    Algorithm name: Artificial Bee Colony optimization - gen:500 limit:20 
    Best:	15.5970540235
    Mean:	367.986927805
    Std:	133.204448181
Testing problem: <class 'PyGMO.problem._problem.rastrigin'>, Dimension: 10
    Algorithm name: Particle Swarm optimization - gen:500 omega:0.7298 eta1:2.05 eta2:2.05 variant:5 topology:2 topology param.:4 
    Best:	0.00162118999148
    Mean:	6.5780108993
    Std:	3.08816840068
    Algorithm name: Differential Evolution - gen:500 F: 0.8 CR: 0.9 strategy:2
    Best:	0.315157739313
    Mean:	5.82518932865
    Std:	2.26326735658
    Algorithm name: Simulated Annealing (Corana's) - iter:10000 Ts:1 Tf:0.01 steps:1 bin_size:20 range:1 
    Best:	0.0328692638161
    Mean:	4.51878436273
    Std:	2.17412902874
    Algorithm name: Improved Harmony Search - iter:10000 phmcr:0.85 ppar_min:0.35 ppar_max:0.99 bw_min:1e-05 bw_max:1 
    Best:	4.0015069942e-06
    Mean:	0.274838143063
    Std:	0.448433901035
    Algorithm name: A Simple Genetic Algorithm - gen:500 CR:0.95 M:0.02 elitism:1 mutation:GAUSSIAN (0.1) selection:ROULETTE crossover:EXPONENTIAL 
    Best:	0.0927752930042
    Mean:	0.782171296743
    Std:	0.459549633203
    Algorithm name: CMAES -  - gen:500 cc:-1 cs:-1 c1:-1 cmu:-1 sigma0:0.5 ftol:1e-06 xtol:1e-06 memory:0
    Best:	3.97983690673
    Mean:	28.8235775007
    Std:	18.3300525763
    Algorithm name: Artificial Bee Colony optimization - gen:500 limit:20 
    Best:	0.105736893518
    Mean:	3.08410155717
    Std:	1.539647106
Testing problem: <class 'PyGMO.problem._problem.rosenbrock'>, Dimension: 10
    Algorithm name: Particle Swarm optimization - gen:500 omega:0.7298 eta1:2.05 eta2:2.05 variant:5 topology:2 topology param.:4 
    Best:	0.00881908051088
    Mean:	5.35980499387
    Std:	8.29479205435
    Algorithm name: Differential Evolution - gen:500 F: 0.8 CR: 0.9 strategy:2
    Best:	0.00233318996891
    Mean:	1.67429798118
    Std:	0.811028608295
    Algorithm name: Simulated Annealing (Corana's) - iter:10000 Ts:1 Tf:0.01 steps:1 bin_size:20 range:1 
    Best:	0.0393858444712
    Mean:	7.97218135917
    Std:	21.9686295211
    Algorithm name: Improved Harmony Search - iter:10000 phmcr:0.85 ppar_min:0.35 ppar_max:0.99 bw_min:1e-05 bw_max:1 
    Best:	0.956472060957
    Mean:	36.5647581809
    Std:	29.9834967967
    Algorithm name: A Simple Genetic Algorithm - gen:500 CR:0.95 M:0.02 elitism:1 mutation:GAUSSIAN (0.1) selection:ROULETTE crossover:EXPONENTIAL 
    Best:	2.3176473038
    Mean:	78.6449379687
    Std:	136.229795235
    Algorithm name: CMAES -  - gen:500 cc:-1 cs:-1 c1:-1 cmu:-1 sigma0:0.5 ftol:1e-06 xtol:1e-06 memory:0
    Best:	1.41869170473e-07
    Mean:	0.398547631601
    Std:	1.17176587245
    Algorithm name: Artificial Bee Colony optimization - gen:500 limit:20 
    Best:	0.502531001134
    Mean:	5.71225878071
    Std:	4.37778157048
Testing problem: <class 'PyGMO.problem._problem.ackley'>, Dimension: 10
    Algorithm name: Particle Swarm optimization - gen:500 omega:0.7298 eta1:2.05 eta2:2.05 variant:5 topology:2 topology param.:4 
    Best:	2.32413630563e-08
    Mean:	3.81402542811e-07
    Std:	3.20494564451e-07
    Algorithm name: Differential Evolution - gen:500 F: 0.8 CR: 0.9 strategy:2
    Best:	4.59418721985e-05
    Mean:	0.000204415621159
    Std:	0.00011144298738
    Algorithm name: Simulated Annealing (Corana's) - iter:10000 Ts:1 Tf:0.01 steps:1 bin_size:20 range:1 
    Best:	0.0304032060458
    Mean:	0.0904880526515
    Std:	0.0312906237811
    Algorithm name: Improved Harmony Search - iter:10000 phmcr:0.85 ppar_min:0.35 ppar_max:0.99 bw_min:1e-05 bw_max:1 
    Best:	0.000519901529526
    Mean:	0.00150213212251
    Std:	0.000281762944794
    Algorithm name: A Simple Genetic Algorithm - gen:500 CR:0.95 M:0.02 elitism:1 mutation:GAUSSIAN (0.1) selection:ROULETTE crossover:EXPONENTIAL 
    Best:	0.136327907423
    Mean:	0.555926357611
    Std:	0.251733137635
    Algorithm name: CMAES -  - gen:500 cc:-1 cs:-1 c1:-1 cmu:-1 sigma0:0.5 ftol:1e-06 xtol:1e-06 memory:0
    Best:	8.22381640564e-07
    Mean:	12.0849119124
    Std:	7.57404637393
    Algorithm name: Artificial Bee Colony optimization - gen:500 limit:20 
    Best:	5.30673283095e-11
    Mean:	0.0781086335943
    Std:	0.17954617318
Testing problem: <class 'PyGMO.problem._problem.griewank'>, Dimension: 10
    Algorithm name: Particle Swarm optimization - gen:500 omega:0.7298 eta1:2.05 eta2:2.05 variant:5 topology:2 topology param.:4 
    Best:	0.0073960428895
    Mean:	0.058624388728
    Std:	0.0298311227375
    Algorithm name: Differential Evolution - gen:500 F: 0.8 CR: 0.9 strategy:2
    Best:	0.0617435807014
    Mean:	0.231192160911
    Std:	0.069104553669
    Algorithm name: Simulated Annealing (Corana's) - iter:10000 Ts:1 Tf:0.01 steps:1 bin_size:20 range:1 
    Best:	0.0678499286157
    Mean:	0.338599242126
    Std:	0.124937374683
    Algorithm name: Improved Harmony Search - iter:10000 phmcr:0.85 ppar_min:0.35 ppar_max:0.99 bw_min:1e-05 bw_max:1 
    Best:	6.37169851614e-05
    Mean:	0.0240581151169
    Std:	0.0182685343858
    Algorithm name: A Simple Genetic Algorithm - gen:500 CR:0.95 M:0.02 elitism:1 mutation:GAUSSIAN (0.1) selection:ROULETTE crossover:EXPONENTIAL 
    Best:	0.226853211148
    Mean:	0.756159401577
    Std:	0.228699676964
    Algorithm name: CMAES -  - gen:500 cc:-1 cs:-1 c1:-1 cmu:-1 sigma0:0.5 ftol:1e-06 xtol:1e-06 memory:0
    Best:	3.54994147633e-07
    Mean:	0.145155362298
    Std:	0.269767299407
    Algorithm name: Artificial Bee Colony optimization - gen:500 limit:20 
    Best:	0.000383901933643
    Mean:	0.0953773876024
    Std:	0.0730986075721
Testing problem: <class 'PyGMO.problem._problem.cassini_1'>, Dimension: 6
    Algorithm name: Particle Swarm optimization - gen:500 omega:0.7298 eta1:2.05 eta2:2.05 variant:5 topology:2 topology param.:4 
    Best:	5.12727016433
    Mean:	12.4492587595
    Std:	3.20911906948
    Algorithm name: Differential Evolution - gen:500 F: 0.8 CR: 0.9 strategy:2
    Best:	5.30342353741
    Mean:	9.05345352859
    Std:	3.31420832697
    Algorithm name: Simulated Annealing (Corana's) - iter:10000 Ts:1 Tf:0.01 steps:1 bin_size:20 range:1 
    Best:	5.42637297463
    Mean:	22.4314032415
    Std:	18.6058495472
    Algorithm name: Improved Harmony Search - iter:10000 phmcr:0.85 ppar_min:0.35 ppar_max:0.99 bw_min:1e-05 bw_max:1 
    Best:	5.1301147108
    Mean:	12.2243254481
    Std:	3.52544564444
    Algorithm name: A Simple Genetic Algorithm - gen:500 CR:0.95 M:0.02 elitism:1 mutation:GAUSSIAN (0.1) selection:ROULETTE crossover:EXPONENTIAL 
    Best:	7.47821473209
    Mean:	31.2279575884
    Std:	20.2901814586
    Algorithm name: CMAES -  - gen:500 cc:-1 cs:-1 c1:-1 cmu:-1 sigma0:0.5 ftol:1e-06 xtol:1e-06 memory:0
    Best:	5.30343166312
    Mean:	24.5250563408
    Std:	18.9947307127
    Algorithm name: Artificial Bee Colony optimization - gen:500 limit:20 
    Best:	5.86364558724
    Mean:	11.5058660912
    Std:	2.95659767329
Testing problem: <class 'PyGMO.problem._problem.cassini_2'>, Dimension: 22
    Algorithm name: Particle Swarm optimization - gen:500 omega:0.7298 eta1:2.05 eta2:2.05 variant:5 topology:2 topology param.:4 
    Best:	13.7429592617
    Mean:	23.1529500775
    Std:	3.58283810753
    Algorithm name: Differential Evolution - gen:500 F: 0.8 CR: 0.9 strategy:2
    Best:	22.6587792033
    Mean:	29.8462647696
    Std:	2.62100838765
    Algorithm name: Simulated Annealing (Corana's) - iter:10000 Ts:1 Tf:0.01 steps:1 bin_size:20 range:1 
    Best:	12.920925309
    Mean:	26.5056382664
    Std:	6.92018725721
    Algorithm name: Improved Harmony Search - iter:10000 phmcr:0.85 ppar_min:0.35 ppar_max:0.99 bw_min:1e-05 bw_max:1 
    Best:	13.5869094673
    Mean:	22.112864336
    Std:	4.46327833456
    Algorithm name: A Simple Genetic Algorithm - gen:500 CR:0.95 M:0.02 elitism:1 mutation:GAUSSIAN (0.1) selection:ROULETTE crossover:EXPONENTIAL 
    Best:	20.2919460802
    Mean:	33.8411039653
    Std:	6.98168322137
    Algorithm name: CMAES -  - gen:500 cc:-1 cs:-1 c1:-1 cmu:-1 sigma0:0.5 ftol:1e-06 xtol:1e-06 memory:0
    Best:	22.9876374119
    Mean:	42.5195980363
    Std:	11.5476095342
    Algorithm name: Artificial Bee Colony optimization - gen:500 limit:20 
    Best:	15.6710234164
    Mean:	27.385262391
 Std:	4.14237372586
Clone this wiki locally