This repository has been archived by the owner on Jul 16, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 87
Test Data (111120_20)
magnific0 edited this page Feb 25, 2014
·
3 revisions
Trials: 200 - Population size: 20 - Generations: 500
Testing problem: Schwefel, Dimension: 10
With Population Size: 20
Algorithm name: Particle Swarm optimization - gen:500 omega:0.7298 eta1:2.05 eta2:2.05 variant:5 topology:2 topology param.:4
Best: 0.000127278601212
Mean: 620.124773894
Std: 235.520140093
Algorithm name: Differential Evolution - gen:500 F: 0.8 CR: 0.9 variant:2 ftol:1e-30 xtol:1e-30
Best: 0.000135145548484
Mean: 2.37219062606
Std: 16.5809998454
Algorithm name: DE - Self adaptive - gen:500 variant:2 self_adaptation:2 restart:1 ftol:1e-30 xtol:1e-30
Best: 0.000127275661725
Mean: 59.7132189533
Std: 116.339385546
Algorithm name: DE - 1220 - gen:500 self_adaptation:2 variants:[1, 2, 3, 4, 5, 6, 7, 8, 9] restart:1 ftol:1e-30 xtol:1e-30
Best: 0.00012727567082
Mean: 2.99096274311
Std: 16.4571892663
Algorithm name: Simulated Annealing (Corana's) - iter:10000 Ts:1 Tf:0.01 steps:1 bin_size:20 range:1
Best: 0.0401397806727
Mean: 327.572508108
Std: 151.282272082
Algorithm name: Improved Harmony Search - iter:10000 phmcr:0.85 ppar_min:0.35 ppar_max:0.99 bw_min:1e-05 bw_max:1
Best: 0.000156438221893
Mean: 0.000307877313344
Std: 0.000782477549864
Algorithm name: A Simple Genetic Algorithm - gen:500 CR:0.95 M:0.02 elitism:1 mutation:GAUSSIAN (0.1) selection:ROULETTE crossover:EXPONENTIAL
Best: 2.25529139691
Mean: 539.854606538
Std: 187.59464555
Algorithm name: CMAES - gen:500 cc:-1 cs:-1 c1:-1 cmu:-1 sigma0:0.5 ftol:1e-30 xtol:1e-30 restart:1
Best: 572.45480051
Mean: 1584.38822193
Std: 386.487190522
Algorithm name: Artificial Bee Colony optimization - gen:250 limit:20
Best: 3.61608779295
Mean: 390.649773146
Std: 138.79450153
Testing problem: Michalewicz, Dimension: 10
With Population Size: 20
Algorithm name: Particle Swarm optimization - gen:500 omega:0.7298 eta1:2.05 eta2:2.05 variant:5 topology:2 topology param.:4
Best: -9.59982110301
Mean: -8.77943375029
Std: 0.482450373628
Algorithm name: Differential Evolution - gen:500 F: 0.8 CR: 0.9 variant:2 ftol:1e-30 xtol:1e-30
Best: -9.66000199313
Mean: -9.5102457865
Std: 0.126902709251
Algorithm name: DE - Self adaptive - gen:500 variant:2 self_adaptation:2 restart:1 ftol:1e-30 xtol:1e-30
Best: -9.66015171564
Mean: -9.57344643998
Std: 0.135442953225
Algorithm name: DE - 1220 - gen:500 self_adaptation:2 variants:[1, 2, 3, 4, 5, 6, 7, 8, 9] restart:1 ftol:1e-30 xtol:1e-30
Best: -9.66015171563
Mean: -9.61086633631
Std: 0.104514565758
Algorithm name: Simulated Annealing (Corana's) - iter:10000 Ts:1 Tf:0.01 steps:1 bin_size:20 range:1
Best: -9.55180880148
Mean: -9.02031636943
Std: 0.291163774415
Algorithm name: Improved Harmony Search - iter:10000 phmcr:0.85 ppar_min:0.35 ppar_max:0.99 bw_min:1e-05 bw_max:1
Best: -9.66014850881
Mean: -9.64475752085
Std: 0.0180832742763
Algorithm name: A Simple Genetic Algorithm - gen:500 CR:0.95 M:0.02 elitism:1 mutation:GAUSSIAN (0.1) selection:ROULETTE crossover:EXPONENTIAL
Best: -9.63361927727
Mean: -9.24432424768
Std: 0.290047064017
Algorithm name: CMAES - gen:500 cc:-1 cs:-1 c1:-1 cmu:-1 sigma0:0.5 ftol:1e-30 xtol:1e-30 restart:1
Best: -9.5736305678
Mean: -8.27264889258
Std: 0.997581425874
Algorithm name: Artificial Bee Colony optimization - gen:250 limit:20
Best: -9.58509000672
Mean: -9.2167908524
Std: 0.192141263037
Testing problem: Rastrigin, Dimension: 10
With Population Size: 20
Algorithm name: Particle Swarm optimization - gen:500 omega:0.7298 eta1:2.05 eta2:2.05 variant:5 topology:2 topology param.:4
Best: 0.994959958314
Mean: 6.23354030706
Std: 2.95337969621
Algorithm name: Differential Evolution - gen:500 F: 0.8 CR: 0.9 variant:2 ftol:1e-30 xtol:1e-30
Best: 0.283089256496
Mean: 5.34621726192
Std: 2.10118191151
Algorithm name: DE - Self adaptive - gen:500 variant:2 self_adaptation:2 restart:1 ftol:1e-30 xtol:1e-30
Best: 0.0
Mean: 1.15511931087
Std: 1.74195298158
Algorithm name: DE - 1220 - gen:500 self_adaptation:2 variants:[1, 2, 3, 4, 5, 6, 7, 8, 9] restart:1 ftol:1e-30 xtol:1e-30
Best: 0.0
Mean: 9.59232693276e-15
Std: 1.35316423471e-13
Algorithm name: Simulated Annealing (Corana's) - iter:10000 Ts:1 Tf:0.01 steps:1 bin_size:20 range:1
Best: 1.02023055602
Mean: 5.12097634135
Std: 2.49422400834
Algorithm name: Improved Harmony Search - iter:10000 phmcr:0.85 ppar_min:0.35 ppar_max:0.99 bw_min:1e-05 bw_max:1
Best: 8.10772975512e-06
Mean: 0.384569897116
Std: 0.480633285333
Algorithm name: A Simple Genetic Algorithm - gen:500 CR:0.95 M:0.02 elitism:1 mutation:GAUSSIAN (0.1) selection:ROULETTE crossover:EXPONENTIAL
Best: 0.110350427362
Mean: 0.777250297442
Std: 0.460681418274
Algorithm name: CMAES - gen:500 cc:-1 cs:-1 c1:-1 cmu:-1 sigma0:0.5 ftol:1e-30 xtol:1e-30 restart:1
Best: 3.97983622837
Mean: 24.6515371396
Std: 15.2033493294
Algorithm name: Artificial Bee Colony optimization - gen:250 limit:20
Best: 0.0566927407942
Mean: 3.03845388626
Std: 1.41720514939
Testing problem: Rosenbrock, Dimension: 10
With Population Size: 20
Algorithm name: Particle Swarm optimization - gen:500 omega:0.7298 eta1:2.05 eta2:2.05 variant:5 topology:2 topology param.:4
Best: 0.0122149937091
Mean: 5.15049849456
Std: 5.27379365577
Algorithm name: Differential Evolution - gen:500 F: 0.8 CR: 0.9 variant:2 ftol:1e-30 xtol:1e-30
Best: 0.234331213506
Mean: 1.72667743751
Std: 0.952637211792
Algorithm name: DE - Self adaptive - gen:500 variant:2 self_adaptation:2 restart:1 ftol:1e-30 xtol:1e-30
Best: 0.00188470334852
Mean: 9.95606270367
Std: 21.8241709726
Algorithm name: DE - 1220 - gen:500 self_adaptation:2 variants:[1, 2, 3, 4, 5, 6, 7, 8, 9] restart:1 ftol:1e-30 xtol:1e-30
Best: 3.73436215662
Mean: 5.23570799637
Std: 0.508248927783
Algorithm name: Simulated Annealing (Corana's) - iter:10000 Ts:1 Tf:0.01 steps:1 bin_size:20 range:1
Best: 0.030495181679
Mean: 4.66192403862
Std: 13.6139388839
Algorithm name: Improved Harmony Search - iter:10000 phmcr:0.85 ppar_min:0.35 ppar_max:0.99 bw_min:1e-05 bw_max:1
Best: 1.87124776287
Mean: 19.0789070004
Std: 23.2561542722
Algorithm name: A Simple Genetic Algorithm - gen:500 CR:0.95 M:0.02 elitism:1 mutation:GAUSSIAN (0.1) selection:ROULETTE crossover:EXPONENTIAL
Best: 1.50793429621
Mean: 58.2618631523
Std: 140.646008398
Algorithm name: CMAES - gen:500 cc:-1 cs:-1 c1:-1 cmu:-1 sigma0:0.5 ftol:1e-30 xtol:1e-30 restart:1
Best: 8.04884642358e-30
Mean: 0.471478701232
Std: 1.28774542778
Algorithm name: Artificial Bee Colony optimization - gen:250 limit:20
Best: 0.496406969842
Mean: 5.99736027246
Std: 4.31778196626
Testing problem: Ackley, Dimension: 10
With Population Size: 20
Algorithm name: Particle Swarm optimization - gen:500 omega:0.7298 eta1:2.05 eta2:2.05 variant:5 topology:2 topology param.:4
Best: 3.47105637566e-08
Mean: 4.9925782184e-07
Std: 4.38320447462e-07
Algorithm name: Differential Evolution - gen:500 F: 0.8 CR: 0.9 variant:2 ftol:1e-30 xtol:1e-30
Best: 4.10651466081e-05
Mean: 0.000207371851706
Std: 0.000108908815321
Algorithm name: DE - Self adaptive - gen:500 variant:2 self_adaptation:2 restart:1 ftol:1e-30 xtol:1e-30
Best: 3.73820530086e-10
Mean: 0.94503558146
Std: 1.72252301982
Algorithm name: DE - 1220 - gen:500 self_adaptation:2 variants:[1, 2, 3, 4, 5, 6, 7, 8, 9] restart:1 ftol:1e-30 xtol:1e-30
Best: 4.4408920985e-16
Mean: 1.07647224468e-14
Std: 5.01028334966e-14
Algorithm name: Simulated Annealing (Corana's) - iter:10000 Ts:1 Tf:0.01 steps:1 bin_size:20 range:1
Best: 0.0281762309922
Mean: 0.0838770470989
Std: 0.0269995646862
Algorithm name: Improved Harmony Search - iter:10000 phmcr:0.85 ppar_min:0.35 ppar_max:0.99 bw_min:1e-05 bw_max:1
Best: 0.000851797551985
Mean: 0.00160180483956
Std: 0.000316101780942
Algorithm name: A Simple Genetic Algorithm - gen:500 CR:0.95 M:0.02 elitism:1 mutation:GAUSSIAN (0.1) selection:ROULETTE crossover:EXPONENTIAL
Best: 0.181189210523
Mean: 0.467773755719
Std: 0.164972713288
Algorithm name: CMAES - gen:500 cc:-1 cs:-1 c1:-1 cmu:-1 sigma0:0.5 ftol:1e-30 xtol:1e-30 restart:1
Best: 3.99680288865e-15
Mean: 10.0568094958
Std: 8.30180186162
Algorithm name: Artificial Bee Colony optimization - gen:250 limit:20
Best: 0.000187142958147
Mean: 0.11965302915
Std: 0.255205859348
Testing problem: Griewank, Dimension: 10
With Population Size: 20
Algorithm name: Particle Swarm optimization - gen:500 omega:0.7298 eta1:2.05 eta2:2.05 variant:5 topology:2 topology param.:4
Best: 2.5265567416e-11
Mean: 0.0538096376596
Std: 0.0286907205892
Algorithm name: Differential Evolution - gen:500 F: 0.8 CR: 0.9 variant:2 ftol:1e-30 xtol:1e-30
Best: 0.0646606465032
Mean: 0.236698126821
Std: 0.067832150433
Algorithm name: DE - Self adaptive - gen:500 variant:2 self_adaptation:2 restart:1 ftol:1e-30 xtol:1e-30
Best: 3.44169137634e-15
Mean: 0.185713182476
Std: 0.80897972213
Algorithm name: DE - 1220 - gen:500 self_adaptation:2 variants:[1, 2, 3, 4, 5, 6, 7, 8, 9] restart:1 ftol:1e-30 xtol:1e-30
Best: 0.0
Mean: 0.0
Std: 0.0
Algorithm name: Simulated Annealing (Corana's) - iter:10000 Ts:1 Tf:0.01 steps:1 bin_size:20 range:1
Best: 0.0746283962695
Mean: 0.314581764058
Std: 0.14607896564
Algorithm name: Improved Harmony Search - iter:10000 phmcr:0.85 ppar_min:0.35 ppar_max:0.99 bw_min:1e-05 bw_max:1
Best: 8.73304436838e-05
Mean: 0.0293262674862
Std: 0.0193979167492
Algorithm name: A Simple Genetic Algorithm - gen:500 CR:0.95 M:0.02 elitism:1 mutation:GAUSSIAN (0.1) selection:ROULETTE crossover:EXPONENTIAL
Best: 0.230247953827
Mean: 0.742952981802
Std: 0.232114538181
Algorithm name: CMAES - gen:500 cc:-1 cs:-1 c1:-1 cmu:-1 sigma0:0.5 ftol:1e-30 xtol:1e-30 restart:1
Best: 0.0
Mean: 0.15485943381
Std: 0.266445990351
Algorithm name: Artificial Bee Colony optimization - gen:250 limit:20
Best: 0.00105088347333
Mean: 0.0932310511421
Std: 0.0603314473186
Testing problem: Cassini 1, Dimension: 6
With Population Size: 20
Algorithm name: Particle Swarm optimization - gen:500 omega:0.7298 eta1:2.05 eta2:2.05 variant:5 topology:2 topology param.:4
Best: 5.34728557871
Mean: 12.7385942445
Std: 3.07635049409
Algorithm name: Differential Evolution - gen:500 F: 0.8 CR: 0.9 variant:2 ftol:1e-30 xtol:1e-30
Best: 5.30342340647
Mean: 9.202619539
Std: 3.27463167589
Algorithm name: DE - Self adaptive - gen:500 variant:2 self_adaptation:2 restart:1 ftol:1e-30 xtol:1e-30
Best: 5.01170814149
Mean: 11.6335212676
Std: 3.76572097267
Algorithm name: DE - 1220 - gen:500 self_adaptation:2 variants:[1, 2, 3, 4, 5, 6, 7, 8, 9] restart:1 ftol:1e-30 xtol:1e-30
Best: 5.22563178455
Mean: 9.78335371653
Std: 3.72996690201
Algorithm name: Simulated Annealing (Corana's) - iter:10000 Ts:1 Tf:0.01 steps:1 bin_size:20 range:1
Best: 5.6778846392
Mean: 20.5673953183
Std: 14.0577559344
Algorithm name: Improved Harmony Search - iter:10000 phmcr:0.85 ppar_min:0.35 ppar_max:0.99 bw_min:1e-05 bw_max:1
Best: 5.35962345048
Mean: 12.6405653296
Std: 4.02644377228
Algorithm name: A Simple Genetic Algorithm - gen:500 CR:0.95 M:0.02 elitism:1 mutation:GAUSSIAN (0.1) selection:ROULETTE crossover:EXPONENTIAL
Best: 6.3090017539
Mean: 28.3781778696
Std: 15.3678742093
Algorithm name: CMAES - gen:500 cc:-1 cs:-1 c1:-1 cmu:-1 sigma0:0.5 ftol:1e-30 xtol:1e-30 restart:1
Best: 5.09741315606
Mean: 20.9033634112
Std: 15.0749151017
Algorithm name: Artificial Bee Colony optimization - gen:250 limit:20
Best: 5.65767937513
Mean: 12.1760396017
Std: 3.42716038292
Testing problem: Cassini 2, Dimension: 22
With Population Size: 20
Algorithm name: Particle Swarm optimization - gen:500 omega:0.7298 eta1:2.05 eta2:2.05 variant:5 topology:2 topology param.:4
Best: 14.6087112698
Mean: 23.7489978614
Std: 3.67353538384
Algorithm name: Differential Evolution - gen:500 F: 0.8 CR: 0.9 variant:2 ftol:1e-30 xtol:1e-30
Best: 22.7082279581
Mean: 29.3240849409
Std: 2.5723824371
Algorithm name: DE - Self adaptive - gen:500 variant:2 self_adaptation:2 restart:1 ftol:1e-30 xtol:1e-30
Best: 16.8135169095
Mean: 25.7799969011
Std: 3.4432286543
Algorithm name: DE - 1220 - gen:500 self_adaptation:2 variants:[1, 2, 3, 4, 5, 6, 7, 8, 9] restart:1 ftol:1e-30 xtol:1e-30
Best: 15.3118429349
Mean: 24.3278756846
Std: 3.43091312793
Algorithm name: Simulated Annealing (Corana's) - iter:10000 Ts:1 Tf:0.01 steps:1 bin_size:20 range:1
Best: 13.5866505381
Mean: 25.8977116478
Std: 5.96537340834
Algorithm name: Improved Harmony Search - iter:10000 phmcr:0.85 ppar_min:0.35 ppar_max:0.99 bw_min:1e-05 bw_max:1
Best: 11.9526646054
Mean: 21.3072119998
Std: 4.21867393547
Algorithm name: A Simple Genetic Algorithm - gen:500 CR:0.95 M:0.02 elitism:1 mutation:GAUSSIAN (0.1) selection:ROULETTE crossover:EXPONENTIAL
Best: 18.1472594043
Mean: 33.2368512389
Std: 8.36482821036
Algorithm name: CMAES - gen:500 cc:-1 cs:-1 c1:-1 cmu:-1 sigma0:0.5 ftol:1e-30 xtol:1e-30 restart:1
Best: 19.8539691266
Mean: 38.1584061887
Std: 11.4729982417
Algorithm name: Artificial Bee Colony optimization - gen:250 limit:20
Best: 15.7977735764
Mean: 29.3438326109
Std: 4.61794870525
Testing problem: GTOC_1, Dimension: 8
With Population Size: 20
Algorithm name: Particle Swarm optimization - gen:500 omega:0.7298 eta1:2.05 eta2:2.05 variant:5 topology:2 topology param.:4
Best: -1349832.40906
Mean: -465237.834967
Std: 306760.186944
Algorithm name: Differential Evolution - gen:500 F: 0.8 CR: 0.9 variant:2 ftol:1e-30 xtol:1e-30
Best: -740021.067834
Mean: -260781.710041
Std: 141970.478656
Algorithm name: DE - Self adaptive - gen:500 variant:2 self_adaptation:2 restart:1 ftol:1e-30 xtol:1e-30
Best: -1178975.92578
Mean: -417499.107815
Std: 252355.693751
Algorithm name: DE - 1220 - gen:500 self_adaptation:2 variants:[1, 2, 3, 4, 5, 6, 7, 8, 9] restart:1 ftol:1e-30 xtol:1e-30
Best: -1126813.88638
Mean: -501695.38356
Std: 187861.255643
Algorithm name: Simulated Annealing (Corana's) - iter:10000 Ts:1 Tf:0.01 steps:1 bin_size:20 range:1
Best: -862209.667744
Mean: -69654.4940946
Std: 138651.831748
Algorithm name: Improved Harmony Search - iter:10000 phmcr:0.85 ppar_min:0.35 ppar_max:0.99 bw_min:1e-05 bw_max:1
Best: -1239952.49323
Mean: -721930.065563
Std: 194867.560529
Algorithm name: A Simple Genetic Algorithm - gen:500 CR:0.95 M:0.02 elitism:1 mutation:GAUSSIAN (0.1) selection:ROULETTE crossover:EXPONENTIAL
Best: -748487.9048
Mean: -74790.6725828
Std: 123708.523202
Algorithm name: CMAES - gen:500 cc:-1 cs:-1 c1:-1 cmu:-1 sigma0:0.5 ftol:1e-30 xtol:1e-30 restart:1
Best: -855784.871326
Mean: -82498.8122687
Std: 151123.56444
Algorithm name: Artificial Bee Colony optimization - gen:250 limit:20
Best: -753138.656765
Mean: -153599.369231
Std: 154290.974277
Testing problem: Rosetta, Dimension: 22
With Population Size: 20
Algorithm name: Particle Swarm optimization - gen:500 omega:0.7298 eta1:2.05 eta2:2.05 variant:5 topology:2 topology param.:4
Best: 2.48882036462
Mean: 10.2758393735
Std: 3.49930026022
Algorithm name: Differential Evolution - gen:500 F: 0.8 CR: 0.9 variant:2 ftol:1e-30 xtol:1e-30
Best: 7.0687411325
Mean: 15.8642044963
Std: 2.32968826086
Algorithm name: DE - Self adaptive - gen:500 variant:2 self_adaptation:2 restart:1 ftol:1e-30 xtol:1e-30
Best: 4.21482823569
Mean: 12.9927580023
Std: 3.07154088091
Algorithm name: DE - 1220 - gen:500 self_adaptation:2 variants:[1, 2, 3, 4, 5, 6, 7, 8, 9] restart:1 ftol:1e-30 xtol:1e-30
Best: 5.30879082001
Mean: 12.8203842628
Std: 2.83243645357
Algorithm name: Simulated Annealing (Corana's) - iter:10000 Ts:1 Tf:0.01 steps:1 bin_size:20 range:1
Best: 2.14188137481
Mean: 11.9358426341
Std: 5.49150476473
Algorithm name: Improved Harmony Search - iter:10000 phmcr:0.85 ppar_min:0.35 ppar_max:0.99 bw_min:1e-05 bw_max:1
Best: 3.81142783963
Mean: 9.80918226842
Std: 3.50545211279
Algorithm name: A Simple Genetic Algorithm - gen:500 CR:0.95 M:0.02 elitism:1 mutation:GAUSSIAN (0.1) selection:ROULETTE crossover:EXPONENTIAL
Best: 6.67739313128
Mean: 18.1001955032
Std: 5.46235746952
Algorithm name: CMAES - gen:500 cc:-1 cs:-1 c1:-1 cmu:-1 sigma0:0.5 ftol:1e-30 xtol:1e-30 restart:1
Best: 6.93862258584
Mean: 20.3618145994
Std: 7.85957767524
Algorithm name: Artificial Bee Colony optimization - gen:250 limit:20
Best: 5.93281890573
Mean: 16.7780049939
Std: 3.09391600562
Testing problem: Messenger full, Dimension: 26
With Population Size: 20
Algorithm name: Particle Swarm optimization - gen:500 omega:0.7298 eta1:2.05 eta2:2.05 variant:5 topology:2 topology param.:4
Best: 11.8866205548
Mean: 20.2179611579
Std: 3.27178470757
Algorithm name: Differential Evolution - gen:500 F: 0.8 CR: 0.9 variant:2 ftol:1e-30 xtol:1e-30
Best: 21.0358118109
Mean: 30.1944433121
Std: 3.99249240266
Algorithm name: DE - Self adaptive - gen:500 variant:2 self_adaptation:2 restart:1 ftol:1e-30 xtol:1e-30
Best: 15.0561422139
Mean: 26.1881155137
Std: 4.03379860365
Algorithm name: DE - 1220 - gen:500 self_adaptation:2 variants:[1, 2, 3, 4, 5, 6, 7, 8, 9] restart:1 ftol:1e-30 xtol:1e-30
Best: 15.5598295777
Mean: 25.4745065581
Std: 4.34306783876
Algorithm name: Simulated Annealing (Corana's) - iter:10000 Ts:1 Tf:0.01 steps:1 bin_size:20 range:1
Best: 12.1581944429
Mean: 25.6204891774
Std: 9.88389691379
Algorithm name: Improved Harmony Search - iter:10000 phmcr:0.85 ppar_min:0.35 ppar_max:0.99 bw_min:1e-05 bw_max:1
Best: 15.5559938422
Mean: 22.419003521
Std: 4.16801666762
Algorithm name: A Simple Genetic Algorithm - gen:500 CR:0.95 M:0.02 elitism:1 mutation:GAUSSIAN (0.1) selection:ROULETTE crossover:EXPONENTIAL
Best: 12.6573363656
Mean: 31.4593710386
Std: 9.15449663432
Algorithm name: CMAES - gen:500 cc:-1 cs:-1 c1:-1 cmu:-1 sigma0:0.5 ftol:1e-30 xtol:1e-30 restart:1
Best: 16.9662431945
Mean: 39.0750061339
Std: 14.10744015
Algorithm name: Artificial Bee Colony optimization - gen:250 limit:20
Best: 16.0182742932
Mean: 32.3072847063
Std: 5.19784180311
Testing problem: TandEM, Dimension: 18
With Population Size: 20
Algorithm name: Particle Swarm optimization - gen:500 omega:0.7298 eta1:2.05 eta2:2.05 variant:5 topology:2 topology param.:4
Best: -6.13051792647
Mean: nan
Std: nan
Algorithm name: Differential Evolution - gen:500 F: 0.8 CR: 0.9 variant:2 ftol:1e-30 xtol:1e-30
Best: nan
Mean: nan
Std: nan
Algorithm name: DE - Self adaptive - gen:500 variant:2 self_adaptation:2 restart:1 ftol:1e-30 xtol:1e-30
Best: -5.19809259586
Mean: nan
Std: nan
Algorithm name: DE - 1220 - gen:500 self_adaptation:2 variants:[1, 2, 3, 4, 5, 6, 7, 8, 9] restart:1 ftol:1e-30 xtol:1e-30
Best: -4.94911347278
Mean: nan
Std: nan
Algorithm name: Simulated Annealing (Corana's) - iter:10000 Ts:1 Tf:0.01 steps:1 bin_size:20 range:1
Best: -6.90104136915
Mean: nan
Std: nan
Algorithm name: Improved Harmony Search - iter:10000 phmcr:0.85 ppar_min:0.35 ppar_max:0.99 bw_min:1e-05 bw_max:1
Best: -4.8266860728
Mean: nan
Std: nan
Algorithm name: A Simple Genetic Algorithm - gen:500 CR:0.95 M:0.02 elitism:1 mutation:GAUSSIAN (0.1) selection:ROULETTE crossover:EXPONENTIAL
Best: -5.04475886196
Mean: nan
Std: nan
Algorithm name: CMAES - gen:500 cc:-1 cs:-1 c1:-1 cmu:-1 sigma0:0.5 ftol:1e-30 xtol:1e-30 restart:1
Best: nan
Mean: nan
Std: nan
Algorithm name: Artificial Bee Colony optimization - gen:250 limit:20
Best: -4.07884926587
Mean: nan
Std: nan