Skip to content
This repository has been archived by the owner on Jul 16, 2024. It is now read-only.

Test Data (1304_20)

magnific0 edited this page Feb 25, 2014 · 1 revision
Trials: 200 - Population size: 20 - Generations: 500
Testing problem: Schwefel, Dimension: 10
With Population Size: 20
    Algorithm name: Particle Swarm optimization - gen:500 omega:0.7298 eta1:2.05 eta2:2.05 variant:5 topology:2 topology param.:4 
    Best:	3.90173227061e-10
    Mean:	662.177396549
    Std:	259.715809161
    Algorithm name: MDE_pBX - gen:500 q percentage:0.15 power mean exponent:1.5 ftol:1e-30 xtol:1e-30
    Best:	5.18205242468
    Mean:	589.875680607
    Std:	261.108821851
    Algorithm name: Differential Evolution - gen:500 F: 0.8 CR: 0.9 variant:2 ftol:1e-30 xtol:1e-30
    Best:	2.41019915848e-05
    Mean:	3.55874668133
    Std:	20.203158925
    Algorithm name: jDE - gen:500 variant:2 self_adaptation:1 memory:0 ftol:1e-30 xtol:1e-30
    Best:	0.0
    Mean:	8.29068342301
    Std:	30.2191877094
    Algorithm name: DE - 1220 - gen:500 self_adaptation:1 variants:[1, 2, 3, 4, 5, 6, 7, 8, 9, 10] memory:0 ftol:1e-30 xtol:1e-30
    Best:	1.81898940355e-12
    Mean:	1.77657713507
    Std:	14.3964704106
    Algorithm name: Simulated Annealing (Corana's) - iter:10000 Ts:1 Tf:0.01 steps:1 bin_size:20 range:1 
    Best:	0.0206870813663
    Mean:	318.852919657
    Std:	164.580350265
    Algorithm name: Improved Harmony Search - iter:10000 phmcr:0.85 ppar_min:0.35 ppar_max:0.99 bw_min:1e-05 bw_max:1 
    Best:	2.19376288442e-05
    Mean:	7.55118002871e-05
    Std:	2.80266195254e-05
    Algorithm name: A Simple Genetic Algorithm - gen:500 CR:0.95 M:0.02 elitism:1 mutation:GAUSSIAN (0.1) selection:ROULETTE crossover:EXPONENTIAL 
    Best:	4.09590559753
    Mean:	490.243092454
    Std:	183.34626468
    Algorithm name: CMAES - gen:500 cc:-1 cs:-1 c1:-1 cmu:-1 sigma0:0.5 ftol:1e-30 xtol:1e-30 memory:0
    Best:	1293.84684093
    Mean:	1955.03198714
    Std:	255.543335231
    Algorithm name: Artificial Bee Colony optimization - gen:250 limit:20 
    Best:	5.74337496144
    Mean:	390.231328647
    Std:	142.633481888
Testing problem: Rastrigin, Dimension: 10
With Population Size: 20
    Algorithm name: Particle Swarm optimization - gen:500 omega:0.7298 eta1:2.05 eta2:2.05 variant:5 topology:2 topology param.:4 
    Best:	0.995081205816
    Mean:	6.49082621999
    Std:	2.99428601142
    Algorithm name: MDE_pBX - gen:500 q percentage:0.15 power mean exponent:1.5 ftol:1e-30 xtol:1e-30
    Best:	9.46131336832e-07
    Mean:	5.56354676126
    Std:	2.67852256895
    Algorithm name: Differential Evolution - gen:500 F: 0.8 CR: 0.9 variant:2 ftol:1e-30 xtol:1e-30
    Best:	0.43524353786
    Mean:	5.81734334515
    Std:	2.07549908656
    Algorithm name: jDE - gen:500 variant:2 self_adaptation:1 memory:0 ftol:1e-30 xtol:1e-30
    Best:	0.0
    Mean:	0.0547227229511
    Std:	0.332939526798
    Algorithm name: DE - 1220 - gen:500 self_adaptation:1 variants:[1, 2, 3, 4, 5, 6, 7, 8, 9, 10] memory:0 ftol:1e-30 xtol:1e-30
    Best:	0.0
    Mean:	0.0
    Std:	0.0
    Algorithm name: Simulated Annealing (Corana's) - iter:10000 Ts:1 Tf:0.01 steps:1 bin_size:20 range:1 
    Best:	0.0703110329116
    Mean:	5.04430919802
    Std:	2.17685236273
    Algorithm name: Improved Harmony Search - iter:10000 phmcr:0.85 ppar_min:0.35 ppar_max:0.99 bw_min:1e-05 bw_max:1 
    Best:	3.9512086687e-06
    Mean:	0.321937638448
    Std:	0.453070042068
    Algorithm name: A Simple Genetic Algorithm - gen:500 CR:0.95 M:0.02 elitism:1 mutation:GAUSSIAN (0.1) selection:ROULETTE crossover:EXPONENTIAL 
    Best:	0.109628084758
    Mean:	0.899979795119
    Std:	0.572313222435
    Algorithm name: CMAES - gen:500 cc:-1 cs:-1 c1:-1 cmu:-1 sigma0:0.5 ftol:1e-30 xtol:1e-30 memory:0
    Best:	1.98991811419
    Mean:	7.19355032946
    Std:	3.47767226821
    Algorithm name: Artificial Bee Colony optimization - gen:250 limit:20 
    Best:	0.106095458641
    Mean:	3.17671052683
    Std:	1.54276390386
Testing problem: Rosenbrock, Dimension: 10
With Population Size: 20
    Algorithm name: Particle Swarm optimization - gen:500 omega:0.7298 eta1:2.05 eta2:2.05 variant:5 topology:2 topology param.:4 
    Best:	0.00711442738739
    Mean:	4.43693309312
    Std:	1.96952902913
    Algorithm name: MDE_pBX - gen:500 q percentage:0.15 power mean exponent:1.5 ftol:1e-30 xtol:1e-30
    Best:	0.170175248087
    Mean:	63.6560630988
    Std:	95.1076881512
    Algorithm name: Differential Evolution - gen:500 F: 0.8 CR: 0.9 variant:2 ftol:1e-30 xtol:1e-30
    Best:	0.152816542164
    Mean:	1.70368430755
    Std:	0.799726728534
    Algorithm name: jDE - gen:500 variant:2 self_adaptation:1 memory:0 ftol:1e-30 xtol:1e-30
    Best:	4.36494250499e-05
    Mean:	2.8423740121
    Std:	2.12087406832
    Algorithm name: DE - 1220 - gen:500 self_adaptation:1 variants:[1, 2, 3, 4, 5, 6, 7, 8, 9, 10] memory:0 ftol:1e-30 xtol:1e-30
    Best:	4.57848297919
    Mean:	5.95872420193
    Std:	0.33044742107
    Algorithm name: Simulated Annealing (Corana's) - iter:10000 Ts:1 Tf:0.01 steps:1 bin_size:20 range:1 
    Best:	0.0275643811236
    Mean:	3.87218587517
    Std:	10.7116394736
    Algorithm name: Improved Harmony Search - iter:10000 phmcr:0.85 ppar_min:0.35 ppar_max:0.99 bw_min:1e-05 bw_max:1 
    Best:	0.0839408615079
    Mean:	22.2419121153
    Std:	25.2658283774
    Algorithm name: A Simple Genetic Algorithm - gen:500 CR:0.95 M:0.02 elitism:1 mutation:GAUSSIAN (0.1) selection:ROULETTE crossover:EXPONENTIAL 
    Best:	1.00112178995
    Mean:	53.7711374685
    Std:	103.996463386
    Algorithm name: CMAES - gen:500 cc:-1 cs:-1 c1:-1 cmu:-1 sigma0:0.5 ftol:1e-30 xtol:1e-30 memory:0
    Best:	2.14964596673e-28
    Mean:	0.0200873416585
    Std:	0.281185584894
    Algorithm name: Artificial Bee Colony optimization - gen:250 limit:20 
    Best:	0.980762680478
    Mean:	6.64971944786
    Std:	5.14446859296
Testing problem: Ackley, Dimension: 10
With Population Size: 20
    Algorithm name: Particle Swarm optimization - gen:500 omega:0.7298 eta1:2.05 eta2:2.05 variant:5 topology:2 topology param.:4 
    Best:	4.91551941373e-08
    Mean:	0.00577620651948
    Std:	0.0814768418335
    Algorithm name: MDE_pBX - gen:500 q percentage:0.15 power mean exponent:1.5 ftol:1e-30 xtol:1e-30
    Best:	0.00237869328833
    Mean:	1.60327495021
    Std:	1.28360368573
    Algorithm name: Differential Evolution - gen:500 F: 0.8 CR: 0.9 variant:2 ftol:1e-30 xtol:1e-30
    Best:	4.81832788748e-05
    Mean:	0.000221597301935
    Std:	0.000115886967436
    Algorithm name: jDE - gen:500 variant:2 self_adaptation:1 memory:0 ftol:1e-30 xtol:1e-30
    Best:	1.7870904756e-10
    Mean:	0.00577574372718
    Std:	0.0814768746391
    Algorithm name: DE - 1220 - gen:500 self_adaptation:1 variants:[1, 2, 3, 4, 5, 6, 7, 8, 9, 10] memory:0 ftol:1e-30 xtol:1e-30
    Best:	3.99680288865e-15
    Mean:	1.63089097782e-12
    Std:	3.87838924327e-12
    Algorithm name: Simulated Annealing (Corana's) - iter:10000 Ts:1 Tf:0.01 steps:1 bin_size:20 range:1 
    Best:	0.0208230698492
    Mean:	0.0841415406396
    Std:	0.0257333714121
    Algorithm name: Improved Harmony Search - iter:10000 phmcr:0.85 ppar_min:0.35 ppar_max:0.99 bw_min:1e-05 bw_max:1 
    Best:	0.000638784801592
    Mean:	0.00139768239132
    Std:	0.00024965691124
    Algorithm name: A Simple Genetic Algorithm - gen:500 CR:0.95 M:0.02 elitism:1 mutation:GAUSSIAN (0.1) selection:ROULETTE crossover:EXPONENTIAL 
    Best:	0.209227212323
    Mean:	0.60539076096
    Std:	0.195119343838
    Algorithm name: CMAES - gen:500 cc:-1 cs:-1 c1:-1 cmu:-1 sigma0:0.5 ftol:1e-30 xtol:1e-30 memory:0
    Best:	3.99680288865e-15
    Mean:	2.10551576174e-13
    Std:	2.45135794532e-12
    Algorithm name: Artificial Bee Colony optimization - gen:250 limit:20 
    Best:	0.000212630053344
    Mean:	0.112270770063
    Std:	0.233942401953
Testing problem: Griewank, Dimension: 10
With Population Size: 20
    Algorithm name: Particle Swarm optimization - gen:500 omega:0.7298 eta1:2.05 eta2:2.05 variant:5 topology:2 topology param.:4 
    Best:	4.10935026851e-06
    Mean:	0.056090488126
    Std:	0.0313500926074
    Algorithm name: MDE_pBX - gen:500 q percentage:0.15 power mean exponent:1.5 ftol:1e-30 xtol:1e-30
    Best:	0.00566699491523
    Mean:	0.246432130336
    Std:	0.443465168549
    Algorithm name: Differential Evolution - gen:500 F: 0.8 CR: 0.9 variant:2 ftol:1e-30 xtol:1e-30
    Best:	0.091601421184
    Mean:	0.238100804994
    Std:	0.0638434666277
    Algorithm name: jDE - gen:500 variant:2 self_adaptation:1 memory:0 ftol:1e-30 xtol:1e-30
    Best:	2.67708077928e-12
    Mean:	0.00547786390036
    Std:	0.00684947991691
    Algorithm name: DE - 1220 - gen:500 self_adaptation:1 variants:[1, 2, 3, 4, 5, 6, 7, 8, 9, 10] memory:0 ftol:1e-30 xtol:1e-30
    Best:	0.0
    Mean:	5.07567518065e-05
    Std:	0.000714986741889
    Algorithm name: Simulated Annealing (Corana's) - iter:10000 Ts:1 Tf:0.01 steps:1 bin_size:20 range:1 
    Best:	0.107969536782
    Mean:	0.340068006446
    Std:	0.130261854541
    Algorithm name: Improved Harmony Search - iter:10000 phmcr:0.85 ppar_min:0.35 ppar_max:0.99 bw_min:1e-05 bw_max:1 
    Best:	9.23700700344e-05
    Mean:	0.023614215755
    Std:	0.0166816367708
    Algorithm name: A Simple Genetic Algorithm - gen:500 CR:0.95 M:0.02 elitism:1 mutation:GAUSSIAN (0.1) selection:ROULETTE crossover:EXPONENTIAL 
    Best:	0.218096592106
    Mean:	0.811166396901
    Std:	0.235274969774
    Algorithm name: CMAES - gen:500 cc:-1 cs:-1 c1:-1 cmu:-1 sigma0:0.5 ftol:1e-30 xtol:1e-30 memory:0
    Best:	0.0
    Mean:	0.00332636174621
    Std:	0.00552262544874
    Algorithm name: Artificial Bee Colony optimization - gen:250 limit:20 
    Best:	0.00047226827658
    Mean:	0.0994500933744
    Std:	0.0670960393046
Testing problem: Levy5, Dimension: 10
With Population Size: 20
    Algorithm name: Particle Swarm optimization - gen:500 omega:0.7298 eta1:2.05 eta2:2.05 variant:5 topology:2 topology param.:4 
    Best:	-4325.65761273
    Mean:	-3454.57090741
    Std:	519.91955685
    Algorithm name: MDE_pBX - gen:500 q percentage:0.15 power mean exponent:1.5 ftol:1e-30 xtol:1e-30
    Best:	-4404.64044644
    Mean:	-3605.28887518
    Std:	512.995443482
    Algorithm name: Differential Evolution - gen:500 F: 0.8 CR: 0.9 variant:2 ftol:1e-30 xtol:1e-30
    Best:	-3596.36297575
    Mean:	-2561.29840637
    Std:	342.036605793
    Algorithm name: jDE - gen:500 variant:2 self_adaptation:1 memory:0 ftol:1e-30 xtol:1e-30
    Best:	-4411.52297553
    Mean:	-4347.64334069
    Std:	62.7249510748
    Algorithm name: DE - 1220 - gen:500 self_adaptation:1 variants:[1, 2, 3, 4, 5, 6, 7, 8, 9, 10] memory:0 ftol:1e-30 xtol:1e-30
    Best:	-4409.29033597
    Mean:	-4252.89235606
    Std:	121.088019977
    Algorithm name: Simulated Annealing (Corana's) - iter:10000 Ts:1 Tf:0.01 steps:1 bin_size:20 range:1 
    Best:	-4231.27838905
    Mean:	-3554.11437368
    Std:	400.907274719
    Algorithm name: Improved Harmony Search - iter:10000 phmcr:0.85 ppar_min:0.35 ppar_max:0.99 bw_min:1e-05 bw_max:1 
    Best:	-4411.33012791
    Mean:	-4113.79982299
    Std:	256.900952051
    Algorithm name: A Simple Genetic Algorithm - gen:500 CR:0.95 M:0.02 elitism:1 mutation:GAUSSIAN (0.1) selection:ROULETTE crossover:EXPONENTIAL 
    Best:	-4172.5072479
    Mean:	-3372.29159666
    Std:	409.58031358
    Algorithm name: CMAES - gen:500 cc:-1 cs:-1 c1:-1 cmu:-1 sigma0:0.5 ftol:1e-30 xtol:1e-30 memory:0
    Best:	-4113.00700325
    Mean:	-2395.35690529
    Std:	599.72593408
    Algorithm name: Artificial Bee Colony optimization - gen:250 limit:20 
    Best:	-3964.53595437
    Mean:	-2941.12755347
    Std:	383.705675506
Testing problem: Cassini 1, Dimension: 6
With Population Size: 20
    Algorithm name: Particle Swarm optimization - gen:500 omega:0.7298 eta1:2.05 eta2:2.05 variant:5 topology:2 topology param.:4 
    Best:	5.31800699846
    Mean:	12.3607438574
    Std:	3.3298782005
    Algorithm name: MDE_pBX - gen:500 q percentage:0.15 power mean exponent:1.5 ftol:1e-30 xtol:1e-30
    Best:	5.26154678032
    Mean:	13.7168846537
    Std:	4.47929495529
    Algorithm name: Differential Evolution - gen:500 F: 0.8 CR: 0.9 variant:2 ftol:1e-30 xtol:1e-30
    Best:	4.93176322905
    Mean:	8.75581243217
    Std:	3.47819507196
    Algorithm name: jDE - gen:500 variant:2 self_adaptation:1 memory:0 ftol:1e-30 xtol:1e-30
    Best:	5.00665773787
    Mean:	9.49119054539
    Std:	3.2576464154
    Algorithm name: DE - 1220 - gen:500 self_adaptation:1 variants:[1, 2, 3, 4, 5, 6, 7, 8, 9, 10] memory:0 ftol:1e-30 xtol:1e-30
    Best:	5.42808178767
    Mean:	10.1789304469
    Std:	3.71090924295
    Algorithm name: Simulated Annealing (Corana's) - iter:10000 Ts:1 Tf:0.01 steps:1 bin_size:20 range:1 
    Best:	5.36587739673
    Mean:	21.3173446707
    Std:	15.1784518042
    Algorithm name: Improved Harmony Search - iter:10000 phmcr:0.85 ppar_min:0.35 ppar_max:0.99 bw_min:1e-05 bw_max:1 
    Best:	5.36988725436
    Mean:	10.221719704
    Std:	4.18470889468
    Algorithm name: A Simple Genetic Algorithm - gen:500 CR:0.95 M:0.02 elitism:1 mutation:GAUSSIAN (0.1) selection:ROULETTE crossover:EXPONENTIAL 
    Best:	5.91223847264
    Mean:	26.5169721487
    Std:	14.7600069077
    Algorithm name: CMAES - gen:500 cc:-1 cs:-1 c1:-1 cmu:-1 sigma0:0.5 ftol:1e-30 xtol:1e-30 memory:0
    Best:	4.93070842698
    Mean:	15.8149301855
    Std:	3.04498930615
    Algorithm name: Artificial Bee Colony optimization - gen:250 limit:20 
    Best:	6.21511811086
    Mean:	12.8318786471
    Std:	3.46539288062
Testing problem: GTOC_1, Dimension: 8
With Population Size: 20
    Algorithm name: Particle Swarm optimization - gen:500 omega:0.7298 eta1:2.05 eta2:2.05 variant:5 topology:2 topology param.:4 
    Best:	-1044976.4212
    Mean:	-433955.328326
    Std:	283469.897501
    Algorithm name: MDE_pBX - gen:500 q percentage:0.15 power mean exponent:1.5 ftol:1e-30 xtol:1e-30
    Best:	-1138278.10661
    Mean:	-424547.855333
    Std:	290055.178241
    Algorithm name: Differential Evolution - gen:500 F: 0.8 CR: 0.9 variant:2 ftol:1e-30 xtol:1e-30
    Best:	-859168.936088
    Mean:	-276588.462936
    Std:	156346.473138
    Algorithm name: jDE - gen:500 variant:2 self_adaptation:1 memory:0 ftol:1e-30 xtol:1e-30
    Best:	-779548.121999
    Mean:	-384622.590259
    Std:	171213.103915
    Algorithm name: DE - 1220 - gen:500 self_adaptation:1 variants:[1, 2, 3, 4, 5, 6, 7, 8, 9, 10] memory:0 ftol:1e-30 xtol:1e-30
    Best:	-843871.175003
    Mean:	-415105.47682
    Std:	163231.565798
    Algorithm name: Simulated Annealing (Corana's) - iter:10000 Ts:1 Tf:0.01 steps:1 bin_size:20 range:1 
    Best:	-948928.113591
    Mean:	-95035.8180183
    Std:	166692.421957
    Algorithm name: Improved Harmony Search - iter:10000 phmcr:0.85 ppar_min:0.35 ppar_max:0.99 bw_min:1e-05 bw_max:1 
    Best:	-1359163.48555
    Mean:	-694665.986351
    Std:	215950.519879
    Algorithm name: A Simple Genetic Algorithm - gen:500 CR:0.95 M:0.02 elitism:1 mutation:GAUSSIAN (0.1) selection:ROULETTE crossover:EXPONENTIAL 
    Best:	-853112.334221
    Mean:	-110514.491584
    Std:	173999.552953
    Algorithm name: CMAES - gen:500 cc:-1 cs:-1 c1:-1 cmu:-1 sigma0:0.5 ftol:1e-30 xtol:1e-30 memory:0
    Best:	-1132812.55768
    Mean:	-105353.686309
    Std:	169808.712152
    Algorithm name: Artificial Bee Colony optimization - gen:250 limit:20 
    Best:	-780852.079732
    Mean:	-178976.681879
    Std:	143384.217286
Testing problem: Cassini 2, Dimension: 22
With Population Size: 20
    Algorithm name: Particle Swarm optimization - gen:500 omega:0.7298 eta1:2.05 eta2:2.05 variant:5 topology:2 topology param.:4 
    Best:	13.5189856711
    Mean:	23.3990371532
    Std:	3.82444968547
    Algorithm name: MDE_pBX - gen:500 q percentage:0.15 power mean exponent:1.5 ftol:1e-30 xtol:1e-30
    Best:	17.9715739194
    Mean:	27.8342476071
    Std:	3.65957950746
    Algorithm name: Differential Evolution - gen:500 F: 0.8 CR: 0.9 variant:2 ftol:1e-30 xtol:1e-30
    Best:	21.7359948683
    Mean:	29.7737655064
    Std:	2.78511959177
    Algorithm name: jDE - gen:500 variant:2 self_adaptation:1 memory:0 ftol:1e-30 xtol:1e-30
    Best:	15.9818839184
    Mean:	26.0434993416
    Std:	3.04570540004
    Algorithm name: DE - 1220 - gen:500 self_adaptation:1 variants:[1, 2, 3, 4, 5, 6, 7, 8, 9, 10] memory:0 ftol:1e-30 xtol:1e-30
    Best:	14.935935327
    Mean:	24.8253980476
    Std:	3.14729502657
    Algorithm name: Simulated Annealing (Corana's) - iter:10000 Ts:1 Tf:0.01 steps:1 bin_size:20 range:1 
    Best:	12.654046653
    Mean:	26.4512645588
    Std:	7.06868820368
    Algorithm name: Improved Harmony Search - iter:10000 phmcr:0.85 ppar_min:0.35 ppar_max:0.99 bw_min:1e-05 bw_max:1 
    Best:	13.0623741473
    Mean:	23.4017731665
    Std:	4.03501611575
    Algorithm name: A Simple Genetic Algorithm - gen:500 CR:0.95 M:0.02 elitism:1 mutation:GAUSSIAN (0.1) selection:ROULETTE crossover:EXPONENTIAL 
    Best:	17.5262306737
    Mean:	33.1139607968
    Std:	7.71387913894
    Algorithm name: CMAES - gen:500 cc:-1 cs:-1 c1:-1 cmu:-1 sigma0:0.5 ftol:1e-30 xtol:1e-30 memory:0
    Best:	16.4637402461
    Mean:	23.3069564462
    Std:	3.67925785898
    Algorithm name: Artificial Bee Colony optimization - gen:250 limit:20 
    Best:	15.4321461296
    Mean:	29.6617970247
    Std:	4.30205061083
Testing problem: Messenger full, Dimension: 26
With Population Size: 20
    Algorithm name: Particle Swarm optimization - gen:500 omega:0.7298 eta1:2.05 eta2:2.05 variant:5 topology:2 topology param.:4 
    Best:	10.7312531734
    Mean:	19.904631493
    Std:	3.62300965799
    Algorithm name: MDE_pBX - gen:500 q percentage:0.15 power mean exponent:1.5 ftol:1e-30 xtol:1e-30
    Best:	9.93232023826
    Mean:	22.3506401433
    Std:	3.84651189989
    Algorithm name: Differential Evolution - gen:500 F: 0.8 CR: 0.9 variant:2 ftol:1e-30 xtol:1e-30
    Best:	19.8985188459
    Mean:	30.112761153
    Std:	3.84084939633
    Algorithm name: jDE - gen:500 variant:2 self_adaptation:1 memory:0 ftol:1e-30 xtol:1e-30
    Best:	16.8458918028
    Mean:	26.5524112933
    Std:	3.41113387709
    Algorithm name: DE - 1220 - gen:500 self_adaptation:1 variants:[1, 2, 3, 4, 5, 6, 7, 8, 9, 10] memory:0 ftol:1e-30 xtol:1e-30
    Best:	16.9796636944
    Mean:	24.8489333163
    Std:	3.47761531864
    Algorithm name: Simulated Annealing (Corana's) - iter:10000 Ts:1 Tf:0.01 steps:1 bin_size:20 range:1 
    Best:	9.34216647409
    Mean:	24.4172459188
    Std:	8.17330668532
    Algorithm name: Improved Harmony Search - iter:10000 phmcr:0.85 ppar_min:0.35 ppar_max:0.99 bw_min:1e-05 bw_max:1 
    Best:	14.8884597996
    Mean:	22.1781578371
    Std:	4.6710128447
    Algorithm name: A Simple Genetic Algorithm - gen:500 CR:0.95 M:0.02 elitism:1 mutation:GAUSSIAN (0.1) selection:ROULETTE crossover:EXPONENTIAL 
    Best:	15.4145267948
    Mean:	32.5869109839
    Std:	8.96334638724
    Algorithm name: CMAES - gen:500 cc:-1 cs:-1 c1:-1 cmu:-1 sigma0:0.5 ftol:1e-30 xtol:1e-30 memory:0
    Best:	13.2330284758
    Mean:	18.2181844994
    Std:	2.51766943202
    Algorithm name: Artificial Bee Colony optimization - gen:250 limit:20 
    Best:	18.9331337508
    Mean:	31.9316788083
 Std:	5.56133076738
Clone this wiki locally