Releases
2.1.0
Highlights
Add class etna.auto.Tune
for tuning hyperparameters
Extend functionality of class etna.auto.Auto
to include a tuning stage
Add notebook about AutoML
Add utilities for estimating number of folds for backtesting and forecasting and integrate them into CLI
Add parameter for setting the start of prediction into CLI
Add etna.transforms.ExogShiftTransform
to shift all exogenous variables
Add etna.models.DeepStateModel
Update requirements for holidays
, scipy
, ruptures
, sqlalchemy
, tsfresh
Optimize make_samples
of etna.models.RNNNet
and etna.models.MLPNet
Add parameter fast_redundancy
in etna.analysis.feature_selection.mrmm
and etna.transforms.MRMRFeatureSelectionTransform
to speed it up
Full changelog
Added
Notebook forecast_interpretation.ipynb
with forecast decomposition (#1220 )
Exogenous variables shift transform ExogShiftTransform
(#1254 )
Parameter start_timestamp
to forecast CLI command (#1265 )
DeepStateModel
(#1253 )
Function estimate_max_n_folds
for folds number estimation (#1279 )
Parameters estimate_n_folds
and context_size
to forecast and backtest CLI commands (#1284 )
Class Tune
for hyperparameter optimization within existing pipeline (#1200 )
Add etna.distributions
for using it instead of using optuna.distributions
(#1292 )
Changed
Set the default value of final_model
to LinearRegression(positive=True)
in the constructor of StackingEnsemble
(#1238 )
Add microseconds to FileLogger
's directory name (#1264 )
Inherit SaveMixin
from AbstractSaveable
for mypy checker (#1261 )
Update requirements for holidays
and scipy
, change saving library from pickle
to dill
in SaveMixin
(#1268 )
Update requirement for ruptures
, add requirement for sqlalchemy
(#1276 )
Optimize make_samples
of RNNNet
and MLPNet
(#1281 )
Remove to_be_fixed
from inference tests on SpecialDaysTransform
(#1283 )
Rewrite TimeSeriesImputerTransform
to work without per-segment wrapper (#1293 )
Add default params_to_tune
for catboost models (#1185 )
Add default params_to_tune
for ProphetModel
(#1203 )
Add default params_to_tune
for SARIMAXModel
, change default parameters for the model (#1206 )
Add default params_to_tune
for linear models (#1204 )
Add default params_to_tune
for SeasonalMovingAverageModel
, MovingAverageModel
, NaiveModel
and DeadlineMovingAverageModel
(#1208 )
Add default params_to_tune
for DeepARModel
and TFTModel
(#1210 )
Add default params_to_tune
for HoltWintersModel
, HoltModel
and SimpleExpSmoothingModel
(#1209 )
Add default params_to_tune
for RNNModel
and MLPModel
(#1218 )
Add default params_to_tune
for DateFlagsTransform
, TimeFlagsTransform
, SpecialDaysTransform
and FourierTransform
(#1228 )
Add default params_to_tune
for MedianOutliersTransform
, DensityOutliersTransform
and PredictionIntervalOutliersTransform
(#1231 )
Add default params_to_tune
for TimeSeriesImputerTransform
(#1232 )
Add default params_to_tune
for DifferencingTransform
, MedianTransform
, MaxTransform
, MinTransform
, QuantileTransform
, StdTransform
, MeanTransform
, MADTransform
, MinMaxDifferenceTransform
, SumTransform
, BoxCoxTransform
, YeoJohnsonTransform
, MaxAbsScalerTransform
, MinMaxScalerTransform
, RobustScalerTransform
and StandardScalerTransform
(#1233 )
Add default params_to_tune
for LabelEncoderTransform
(#1242 )
Add default params_to_tune
for ChangePointsSegmentationTransform
, ChangePointsTrendTransform
, ChangePointsLevelTransform
, TrendTransform
, LinearTrendTransform
, TheilSenTrendTransform
and STLTransform
(#1243 )
Add default params_to_tune
for TreeFeatureSelectionTransform
, MRMRFeatureSelectionTransform
and GaleShapleyFeatureSelectionTransform
(#1250 )
Add tuning stage into Auto.fit
(#1272 )
Add params_to_tune
into Tune
init (#1282 )
Skip duplicates during Tune.fit
, skip duplicates in top_k
, add AutoML notebook (#1285 )
Add parameter fast_redundancy
in mrmm
, fix relevance calculation in get_model_relevance_table
(#1294 )
Fixed
Fix plot_backtest
and plot_backtest_interactive
on one-step forecast (1260 )
Fix BaseReconciliator
to work on pandas==1.1.5
(#1229 )
Fix TSDataset.make_future
to handle hierarchy, quantiles, target components (#1248 )
Fix warning during creation of ResampleWithDistributionTransform
(#1230 )
Add deep copy for copying attributes of TSDataset
(#1241 )
Add tsfresh
into optional dependencies, remove instruction about pip install tsfresh
(#1246 )
Fix DeepARModel
and TFTModel
to work with changed prediction_size
(#1251 )
Fix problems with flake8 B023 (#1252 )
Fix problem with swapped forecast methods in HierarchicalPipeline (#1259 )
Fix problem with segment name "target" in StackingEnsemble
(#1262 )
Fix BasePipeline.forecast
when prediction intervals are estimated on history data with presence of NaNs (#1291 )
Teach BaseMixin.set_params
to work with nested list
and tuple
(#1201 )
Fix get_anomalies_prediction_interval
to work when segments have different start date (#1296 )
Fix classification
notebook to download FordA
dataset without error (#1299 )
Fix signature of Auto.fit
, Tune.fit
to not have a breaking change (#1300 )
You can’t perform that action at this time.