Releases: ICB-DCM/pyPESTO
Releases · ICB-DCM/pyPESTO
pyPESTO v0.3.1
- Visualize:
- Parameter plot w/ hier. pars, noise estimation for splines (#1061)
- Sampling:
- AdaptiveMetropolis failure fix for bounded priors (#1065)
- Ensembles
- Speed up Ensemble from History (#1063)
- PEtab support:
- Objective
- AggregatedObjective: objective-specific kwargs for call_unprocessed (#1068)
- Select
- Examples
- General
pyPESTO v0.3.0
New functionalities compared to 0.2.0:
- New supported data types for parameter estimation:
- ordinal data
- censored data
- unbounded parameter optimization
- New optimization approaches:
- Hierarchical optimization
- Spline approximation
- New optimizers: CMA-ES, Enhanced Scatter Search, Fides, NLopt, SACESS, SciPy Differential Evolution
- New samplers: Emcee, Dynesty, Pymc v4
- New Objectives: Aesara objective, Julia objective, Jax objective
- Ensemble analysis
- Model selection
- Predictions
- Hdf5 Storage
Not supported functionalities and versions compared to 0.2.0:
- Removed Python 3.8 and older support
- Pymc (v3)
- Removed Theano objective
- Changed parameter indexing from boolean to int in profiling routines
pyPESTO v0.2.17
- Optimize:
- Sampling:
- Engine
- Allow custom multiprocessing context (#1032)
- General
pyPESTO v0.2.16
- Optimize:
- Petab
- Improvement to create_startpoint_method() (#1018)
- Sampling:
- Visualization:
- Profiling:
- added option to profile the whole parameter bounds. (#1014)
- General
- Add CODEOWNERS (#1001)
- Add list of publications using pypesto (#1008)
- allow passing results to init of pypesto.Result (#998)
- Updated flake8 to ignore Error B028 from bugbear until support for python 3.8 runs out. (#1005)
- black update (#1010)
- Doc typo fixes (#995)
- Doc: Install amici on RTD (#1016)
- Add getting_started notebook (#1023)
- remove alernative formats build (#1022)
pyPESTO v0.2.15
- Optimize:
- Sampling:
- Visualization:
- Objective definition:
- Support for jax objectives (#986)
- General
- Fix license_file SetuptoolsDeprecationWarning (#965)
- Remove benchmark-models-petab requirement (#964)
- Github Actions(#958, #989 )
- Fix typehint for problem.x_priors_defs (#962)
- Fix tox4-related issues (#981)
- Fix AMICI deprecation warning (#956)
- Add pypesto.visualize.model_fit to API doc (#991)
- Exclude numpy==1.24.0 (#993)
pyPESTO v0.2.14
- Ensembles:
- PEtab:
- Optimize:
- Fides: Include message according to exitflag (#878)
- Sampling:
- Visualization:
- History and storage:
- Fix history-result reconstruction mismatch (#902)
- Move history to own module (#903)
- Remove chi2, schi2 except for history convenience function (#904)
- Clean up history hierarchy (#908)
- Fix
read_result
with history (#907) - Improve hdf5 history file lock (#909, #921)
- Fix message in
check_overwrite
(#894) - Deactivate automatic saving (#930, #932)
- Allow problem=None in read_result_from_file (#936)
- Remove superfluous get_or_create_group (#937)
- Extract read_history_from_file from read_result_from_file (#939)
- Select: use model ID in save postprocessor filename, by default (#943)
- Select:
- Objective and Result:
- General:
- Remove version from
CITATION.cff
(#887) - Fix CI and docs (#892, #893)
- Literal typehints for
mode
(#899) - Fix pandas deprecation warning (#896)
- Document NEP 29 (time-window based python support) (#905)
- Fix
get_for_key
deprecation warning (#906) - Fix multiple warnings from existing AMICI model (#912)
- Fix warning from AMICI fixed overrides (#912)
- Fix flaky test
CRFunModeHistoryTest.test_trace_all
(#917) - Fix novel B024 ABC without abstract methods (#923)
- Improve API docs and add overview notebook (#911)
- Fix typos (#926)
- Fix julia tests (#929, #933)
- Fix flaky test_mpipoolengine (#938)
- More informative test IDs in test_optimize (#940)
- Speed-up import via lazy imports (#946)
- Remove version from
pyPESTO v0.2.13
- Ensembles:
- Added standard deviation to ensemble prediction plots (#853)
- Storage
- General
- Various additions to Optimize(r)Result summary method (#859, #865, #866, #867)
- Fixed optimizer history fval offset (#834)
- Updated the profile, minimize, sample and added overwrite as argument. (#864)
- Fixed y-labels in
pypesto.visualize.optimizer_history
(#869) - Created
show_bounds
, to display proper sampling scatter plots. (#868) - Enabled saving messages and exit flags in hdf5 history in case of finished run (#873)
- Select: use objective function evaluation time as optimization time for models with no estimated parameters (#872)
- removed checking for equality and checking for
np.allclose
in `test_aesara (#877)
pyPESTO v0.2.12
- AMICI:
- Update to renamed steady state sensitivity modes (#843)
- Set amici.Solver.setReturnDataReportingMode (#835)
- Optimize
pypesto/objective/amici_util.py::par_index_slices
(#845) - Remove Solver.getPreequilibration (#830)
- fix n_res size for error output with parameter dependent sigma (#812)
- PetabImporter: Auto-regenerate AMICI models in case of version mismatch (#848 )
- Pymc3
- Disable Pymc3 Sampler tests (#831 )
- Visualizations:
- OptimizeResult:
- General:
- disable progress bar in tests (#799 )
- Make Fides work with objectives, that do not have a hessian (#807 )
- removed ftol in favor of tol (#803 )
- Fix pyPESTO Select test; Update to stable black version (#810 )
- Fix id assignment in case of large number of starts (#825 )
- Temporarily fix jinja2 version (#826)
- Upgrade black to be compatible with latest click (#829)
- Fix wrong link in doc/example/hdf5_storage.ipynb (#827)
- Mark test/base/test_prior.py::test_mode as flaky (#833)
- Custom methods for autosave filenames (#822)
- fix saving ensemble predictions to hdf5 (#840 )
- Upgrad nbQA to 1.3.1 (#846)
- removed constantParameters for constant_parameters in notebook (#852)
pyPESTO 0.2.11
-
Model selection (#397):
- Automated model selection with forward/backward/brute force methods and
AIC/AICc/BIC criteria - Much functionality (methods, criteria, model space, problem
specification) viaPEtab Select <https://github.com/PEtab-dev/petab_select>
- Plotting routines
Example notebook <https://github.com/ICB-DCM/pyPESTO/blob/main/doc/example/model_selection.ipynb>
- Model calibration postprocessors
- Select first model that improves on predecessor model
- Use previous MLE as startpoint
- Tests
- Automated model selection with forward/backward/brute force methods and
-
AMICI:
- Maintain model settings when pickling for multiprocessing (#747)
-
General:
pyPESTO 0.2.10
-
AMICI:
- Make AMICI objective report only what is being asked for (#777)
-
Optimization:
-
Storage:
-
CI:
- Compile AMICI models without gradients in test suite (#774)
-
General:
- (Breaking) Create result sub-module; shift storage+result related
functionality (#784) - Fix finite difference constant mode (#786)
- Refactor ensemble module (#788)
- Introduce general C constants file (#788)
- Apply isort for automatic imports formatting (#785)
- Reduce run log output (#789)
- Various minor fixes (#765, #766, #768, #771)
- (Breaking) Create result sub-module; shift storage+result related