Releases: NVIDIA-Merlin/models
Releases · NVIDIA-Merlin/models
v23.12.00
What's Changed
- Fix sok import error in ut by @EmmaQiaoCh in #1232
- fix dependencies in docs build by @edknv in #1236
- move merlin dependecy install in horovod-cpu tests by @edknv in #1235
New Contributors
- @EmmaQiaoCh made their first contribution in #1232
Full Changelog: v23.08.01...v23.12.00
v23.08.01
🐜 Bug Fixes
- Change model call default arg values to None instead of bool vals by @oliverholworthy in #1218
- Handle ColumnSchema
target
in serialization ofSequenceTransform
by @oliverholworthy in #1214 - Ensure TopKEncoder has correct outputs when model is saved by @oliverholworthy in #1225
🔧 Maintenance
- Use
copy-pr-bot
by @ajschmidt8 in #1209 - use rapids infra to run testing by @jperez999 in #1216
- improve hpo test by @radekosmulski in #1222
New Contributors
- @ajschmidt8 made their first contribution in #1209
Full Changelog: v23.08.00...v23.08.01
v23.08.00
Makes RetrievalModelV2 support item tower with transforms (e.g. pre-t…
v23.06.00
Update merlin dependencies to match 23.06 release (#1155)
v23.05.00
What’s Changed
⚠ Breaking Changes
- Update minimum version of TensorFlow from 2.8 to 2.9 @oliverholworthy (#1084)
🐜 Bug Fixes
🚀 Features
- Adding ParallelBlock @marcromeyn (#1088)
- Add dataloader pre-trained embeddings support to Merlin Models @gabrielspmoreira (#1083)
- Introducing Block @marcromeyn (#1087)
- Creates LogLossMetric and generalizes WandbLogger and ExamplesPerSecondCallback @gabrielspmoreira (#1085)
📄 Documentation
- update pretrained embs example @radekosmulski (#1100)
- Change tf.keras.optimizers.Adagrad() to tf.keras.optimizers.legacy.Adagrad() @rnyak (#1098)
- implement review suggestions @radekosmulski (#1062)
🔧 Maintenance
- Skip installing dependencies in tox gpu test @edknv (#1105)
- Change tf.keras.optimizers.Adagrad() to tf.keras.optimizers.legacy.Adagrad() @rnyak (#1098)
- Add Workflows to check base branch and set stable branch @oliverholworthy (#1080)
- Update tag pattern in GitHub Workflows @oliverholworthy (#1081)
- Update minimum version of TensorFlow from 2.8 to 2.9 @oliverholworthy (#1084)
- Remove use of deprecated numpy aliases of builtin types @oliverholworthy (#1082)
- Add publish step for conda package @oliverholworthy (#1075)
- Skip gpu tests on PR closed event @edknv (#1067)
- Update requirements for Merlin packages to minimum version of 23.04 @oliverholworthy (#1069)
- remove blossom-ci @nv-alaiacano (#1074)
v23.04.00
What’s Changed
⚠ Breaking Changes
- New design of the transformer API @sararb (#1022)
- Updates Models to support new dataloader format for lists (__values and __offsets in dict) and scalar (1D) @gabrielspmoreira (#999)
🐜 Bug Fixes
- Refactory/fix of sampled softmax to add logQ correction @gabrielspmoreira (#1051)
- Fixes model.batch_predict() which was not working with ModelOuput @gabrielspmoreira (#1052)
- Test Model Reloading - Fixing some layers @oliverholworthy (#1044)
- Adds Support to embedding sequence_combiner for dense tensors @gabrielspmoreira (#1029)
- Fixed DLRModel / DLRMBlock to accept bottom_block with dropout on top of MLPs @gabrielspmoreira (#1018)
🚀 Features
- Refactory/fix of sampled softmax to add logQ correction @gabrielspmoreira (#1051)
- Add Transformers4Rec repo test @edknv (#1049)
- Fix import gpu without support @jperez999 (#1053)
- Tensorflow 2.11 support @edknv (#1016)
- New design of the transformer API @sararb (#1022)
- Introduce SOKEmbedding using Sparse Operation Kit @WonderingWJ (#863)
- Updates Models to support new dataloader format for lists (__values and __offsets in dict) and scalar (1D) @gabrielspmoreira (#999)
- Save and load Implicit model and schemas @edknv (#1014)
- Updates on MTL example text and illustration @gabrielspmoreira (#1003)
📄 Documentation
- MM transformer training and serving example @radekosmulski (#1045)
- Updates on MTL example text and illustration @gabrielspmoreira (#1003)
🔧 Maintenance
- Add Transformers4Rec repo test @edknv (#1049)
- Install
wheel
package to enable legacy install method of LightFM package @oliverholworthy (#1060) - Fix import gpu without support @jperez999 (#1053)
- Update dataset test to expect schema.pbtxt in output @edknv (#1057)
- Update
test_synthetic_aliccp_raw_data
to check subset of outputs @oliverholworthy (#1056) - add concurrency param to kill Github Action jobs when new commits come in @nv-alaiacano (#1055)
- Set batch sizes in unit tests to powers of 2 at least 16 @edknv (#1054)
- Enable pickle of model with TensorFlow 2.11 @oliverholworthy (#1040)
- set random seed in implicit tests @edknv (#1031)
- Skip SOK tests if SOK is not installed @edknv (#1030)
- Restoring tox.ini and .github/workflows/tensorflow.yml @gabrielspmoreira (#1023)
- Convert Tensor to RaggedTensor in PrepareFeatures for list features @oliverholworthy (#1028)
- Fix dataset test due to metadata location change @edknv (#1021)
- Updates Models to support new dataloader format for lists (__values and __offsets in dict) and scalar (1D) @gabrielspmoreira (#999)
- Add a
pytest.ini
file to register custom markers (e.g.notebook
) @karlhigley (#1017) - Add multi-gpu github action tests using horovod @edknv (#1009)
- Set random seed in each lightfm test @edknv (#1012)
- Use globally insatlled installed packages for GPU tests @edknv (#1011)
v23.02.00
What’s Changed
🐜 Bug Fixes
- Fix BroadcastToSequence to enable context features in sequential models @gabrielspmoreira (#991)
- Fixes lower train metrics when using Keras Masking (SequenceMaskRandom, SequenceMaskLast) @gabrielspmoreira (#983)
- Makes ColumnBasedSampleWeight serializable @gabrielspmoreira (#979)
- fix training a sequential model with AverageEmbeddingsByWeightFeature @sararb (#973)
- Fixes support of sequential continuous features for sequential and non-sequential models @gabrielspmoreira (#969)
- add get_config() to AverageEmbeddingsByWeightFeature class @rnyak (#968)
🚀 Features
- Fixes support of sequential continuous features for sequential and non-sequential models @gabrielspmoreira (#969)
- add get_config() to AverageEmbeddingsByWeightFeature class @rnyak (#968)
📄 Documentation
- enhancing the next-item prediction notebook documentation @MarkMoTrin (#975)
- Update 05-Retrieval-Model.ipynb @al-yakubovich (#967)
🔧 Maintenance
- enhancing the next-item prediction notebook documentation @MarkMoTrin (#975)
- Remove Notebook Output before running pre-commit lint checks @oliverholworthy (#984)
- fix gpu visibility with env passthrough @jperez999 (#976)
v0.11.0
What’s Changed
🐜 Bug Fixes
- Fix the inference of transformer-based models trained with masked language modeling @sararb (#909)
- Making InputBlockV2(..., embeddings) deprecated and adjusting tests to use categorical arg @gabrielspmoreira (#880)
- Preventing silent error when evaluating V1 retrieval models (TwoTower, MF) @gabrielspmoreira (#892)
- Fix loading of
TwoTowerModel
with context query variable @oliverholworthy (#887) - Enable
sequence-testing
synthetic data to be generated with different sequence lengths @oliverholworthy (#882) - Enable concat of sequence features with
InputBlockV2
@oliverholworthy (#883) - Make path optional in get_booking @marcromeyn (#874)
- fix dtype error due to date column in ecommerce-session-based-next-item-prediction-for-fashion nb @rnyak (#921)
- Fix the serialization of SequenceSummary block @sararb (#927)
- Use tf.function for list column operations @edknv (#938)
🚀 Features
- Save output schema of model and add save method to
Encoder
@oliverholworthy (#886) - Add the support of different thresholds k in the TopkEncoder @sararb (#869)
📄 Documentation
- Update retrieval notebook to new api @rnyak (#900)
- Add Reference to Transformer4Rec for PyTorch support
@bschifferer
(#903) - docs: Add calver to semver banner @mikemckiernan (#865)
- docs: Add basic SEO configuration @mikemckiernan (#864)
- update drafter to work on tags only and update cpu ci to target branch @jperez999 (#901)
- Session-based example using dressipi dataset and XLNet architecture @rnyak (#849)
- Adding Multi-GPU Data Parallel Example @bschifferer (#855)
- T4rec use case @radekosmulski (#853)
- Do not copy source to docs output @mikemckiernan (#888)
🔧 Maintenance
- Support
tuple
return type from modelpre
and update test to use this @oliverholworthy (#890) - Use merlin-dataloader package @edknv (#845)
- update drafter to work on tags only and update cpu ci to target branch @jperez999 (#901)
- Add skip if transformers not available for next item prediction notebook test @oliverholworthy (#899)
- Skip retrieval_with_hpo notebook test when optuna is not installed @edknv (#897)
- Update test of lazy adam notebook to only run when GPU available @oliverholworthy (#894)
- Remove tensorflow dependencies from
requirements/dev.txt
@oliverholworthy (#895) - Add test for retrieval model with transformer block @oliverholworthy (#833)
- Pin fiddle to 0.2.2 so that tests run with pip install @oliverholworthy (#872)
- Pass task="binary" to binary metrics to handle latest torchmetrics @oliverholworthy (#920)
- Publish Release Draft on release branch builds @oliverholworthy (#925)
- Update branch name extraction for tag builds @oliverholworthy (#972)
Full Changelog: v0.10.0...v0.11.0
v0.10.0
What’s Changed
🐜 Bug Fixes
- Enable concat of sequence features with
InputBlockV2
@oliverholworthy (#883) - Make path optional in get_booking @marcromeyn (#874)
📄 Documentation
- T4rec use case @radekosmulski (#853)
- Do not copy source to docs output @mikemckiernan (#888)
🔧 Maintenance
- Skip retrieval_with_hpo notebook test when optuna is not installed @edknv (#897)
- Update test of lazy adam notebook to only run when GPU available @oliverholworthy (#894)
- Remove tensorflow dependencies from
requirements/dev.txt
@oliverholworthy (#895) - Add test for retrieval model with transformer block @oliverholworthy (#833)
- Pin fiddle to 0.2.2 so that tests run with pip install @oliverholworthy (#872)
v0.9.0
What’s Changed
🐜 Bug Fixes
- Quick fix to parse post in transformer when a string is passed in @marcromeyn (#832)
- Trying to add Bokeh to dev-requirements to fix failing xgb-tests @marcromeyn (#839)
- Ensure metrics passed to
model.compile()
are always reset @sararb (#830) - Fix
EmbeddingFeatures
serialization/deserialization when a feature is named 'name' @oliverholworthy (#817) - Add support for LogitsTemperatureScaler in the new ModelOutput API @sararb (#815)
- Add LogQ correction support to the new ModelOutput API @sararb (#811)
🚀 Features
- Removing mask from PredictionContext, since it's unused @marcromeyn (#838)
- Add
seed
toTopKMetric
for consistent metrics when ties in ranking @oliverholworthy (#827) - Adding SequenceSummary transforms for transformers @marcromeyn (#828)
- [Test] - fix pretrained embedding unittest @bschifferer (#826)
- Making sure InputBlockV2 works without the precense of categorical-features @marcromeyn (#821)
- fix OOM issue in accelerate-training-of-large-embedding-tables-by-LazyAdam nb unit test @rnyak (#816)
- Add L2-batch regularization to EmbeddingTable @sararb (#812)
🔧 Maintenance
- fix OOM issue in accelerate-training-of-large-embedding-tables-by-LazyAdam nb unit test @rnyak (#816)
- update temp data paths in example notebooks @nv-alaiacano (#813)
- Use pytest-xdist with tensorflow tests to reduce running time of tests @oliverholworthy (#795)
- Add
python_requires
specifying 3.8 as minimum Python version @oliverholworthy (#797)