Skip to content

Releases: onnx/onnxmltools

Release 1.13.0

17 Dec 07:46
3ae696a
Compare
Choose a tag to compare
  • Add missing dependency onnxconverter_common, fix multi regression with xgboost #679
  • Handle issue with binary classifier setting output to [N,1] vs [N,2] #681
  • Fix pkg name of onnxconverter_common #683
  • Update tree_ensemble_common.py #691

1.12.0

16 Dec 15:11
180e733
Compare
Choose a tag to compare
  • Fix early stopping for XGBClassifier and xgboost > 2, #597
  • Fix discrepancies with XGBRegressor and xgboost > 2, #670
  • Support count:poisson for XGBRegressor, #666
  • Supports XGBRFClassifier and XGBRFRegressor, #665
  • ONNX_DFS_PATH to be set in the spark config, #653 (by @Ironwood-Cyber)
  • Sparkml converter: support type StringType and StringType(), #639
  • Add check for base_score in _get_attributes function #637, #626 (by @tolleybot)
  • Support for lightgbm >= 4.0, #634

1.11.2

07 Mar 06:03
175aee0
Compare
Choose a tag to compare
  • #608 fix: Spark Imputer conversion with multiple input cols
  • #607 fix: getTensorTypeFromSpark fails for Spark 3.3.0+
  • #606 Add onnxruntime==1.14.0 to CI
  • #605 Replace real images by dummy ones
  • #602 Update CI with latext onnxruntime, xgboost
  • #606 convert_lightgbm: Add shape to FloatTensor probabilities

1.11.1

10 Jun 05:36
d0130f2
Compare
Choose a tag to compare
  • feat: add support for SparkML CountVectorizer conversion #560
  • docs: update sparkml doc; cleanups. #559
  • fix: 'SparkSession' object has no attribute 'util' #557
  • feat: add support for SparkML KMeansModel conversion #556
  • fix: SparkML StandardScaler conversion fails when withStd or withMean is set to true #555
  • fix: Converter for SparkML VectorAssembler does not support vector inputs correctly #554
  • fix: ONNX conversion for Spark OneHotEncoder model #552

1.11.0

11 Apr 06:08
8ac872b
Compare
Choose a tag to compare
  • Fix conversion of XGBoost model after being restored #520
  • Fix test case condition for onnx=1.11.0 #527
  • Update CI for ORT 1.11.0 #539
  • Adjust author and email #539

1.10.0

22 Oct 10:27
adc41ee
Compare
Choose a tag to compare
  • Replace #507 + fix bug with XGBoost converter when base_score is None #510
  • Use assertRegex instead of assertRegexpMatches for Python 3.11 compatibility. #508
  • Support for opset 15 and update version to 1.10.0 #505
  • add support for quantile objective for LGBM models #503
  • Support parameter shape_override and other options for convert_tensorflow #497
  • Implement option split to reduce discrepancies for lightgbm regressors #496

1.9.1

23 Aug 17:58
8e52e09
Compare
Choose a tag to compare
  • Add requirements.txt to MANIFEST.in #493

1.9.0

20 Aug 11:01
cb2782b
Compare
Choose a tag to compare

LightGBM

  • Improves lightgbm conversion speed #491
  • Fix discovering classifier objective #480
  • Fix missing type in lgbm regressor #488
  • Support gamma objective in LGBMRegressor #484
  • Allow to add custom post transform functions that are not supported by the ONNX spec yet #463
  • Enable option zipmap for LGBM converter #452

XGBoost

  • Use all tree when best_ntree_limit is not specified #459
  • Fix discrepencies when xgboost trees are empty #447

Keras

  • Switch to tf2onnx for tensorflow>=2.0 instead of keras2onnx #492

1.8.0

19 Feb 15:34
ccddab5
Compare
Choose a tag to compare

New features

  • New converters for CatBoost #392
  • Integration with Hummingbird #404, #418, #427
  • Support for opset 13 #437

XGBoost

  • Support float type for feature_id #423
  • Support unsigned integer as class type #426
  • Fix the converter when the parameter best_ntree_limit is used #429
  • Support multi:softmax objective #442

CoreML

  • Extend CoreML: ReshapeStatic/LoadConstantND #430
  • Fix PReLU conversion from CoreML #425

v1.7.0

08 Jun 06:52
Compare
Choose a tag to compare

The major update for this release

  1. Supports ONNX 1.7
  2. Work with the new xgboost version
  3. Remove Python 2.x support

Details:
Add the flake8 to be the default code formatter (#401)
Fixes #396, xgboost converter for xgboost >= 1.0.2 (#397)
Support onnx 1.7 in CI build (#398)
fixed the xgboost version (#395)
fix ceiling-mode defaults for pool operators (AvgPool, MaxPool) (#388)
Update documentation, add examples (#385)
Remove support of python 2.7 (#383)
upgrade to 1.7 (#384)
Fix for onnx 1.7 release (#381)
Ping h2o version==3.28.0.3 (#377)
Fix xgboost converter (#373)
xgboost not supporting 1.0 version. (#372)

Known issues:
onnxmltools tf2onnx wrapper can only work with tf2onnx <= 1.5.6.